
J. Luke Scott
Selected Topics in Artificial Intelligence

MiCS Program
University of Luxembourg

Final Project
Friday 18th January, 2013

A Java Implementation
of Cumulative Measures

This document describes a query and revision
library for Cumulative Measures, as described
in [5].

The library supports a number of useful fea-
tures, most importantly:

• The ability to add arbitrary propositions
to a knowledge base

• Revision by plain belief, static value, or
by comparative value (by stating a de-
sired relationship between two proposi-
tions)

• Querying the knowledge base to re-
trieve a set of permutations of proposi-
tions

• Querying the knowledge base for a total
valuation of the results which match the
query.

This library has been successfully tested using
various use cases from the literature (see Sec-
tion 1.4 for more information).

1 Functionality

The library implements a very intuitive Cumu-
lative Measure knowledge base API which al-
lows adding propositions, revising, and query-
ing. The core component of the API is a

CumulativeMeasure object, which contains
the knowledge base data as well as an index
which is used internally for querying.

After instantiating a CumulativeMeasure ob-
ject, it then becomes the central point for com-
mand execution. Furthermore, for more fine-
grained control of behavior, or to do more
complex logic outside the knowledge base, the
Value, Query, and Constraint objects can be
used individually.

Another core object in the library is a
BeliefPermutation. This object represents
a unique combination of true/false assertions
for each proposition in the knowledge base.
Most operations in the library will perform
logic over sets of BeliefPermutations.

1.1 Command Overview

There are primarily four commands which
constitute the CumulativeMeasure func-
tionality. In the examples here, I as-
sume a CumulativeMeasure object named
cumulative.

New propositions can be added to the knowl-
edge base using CumulativeMeasure.add().
For instance, to add a proposition named A,
one would call the command:

cumulative.add("A")

The strength of belief for new propositions
added will be divided evenly between true

and false.

CumulativeMeasure.query() is used for re-
turning belief permutations from the knowl-
edge base by passing in a query string, for ex-
ample:

Set <BeliefPermutation > results =
cumulative.query("a OR b");

would return all belief permutations where ei-
ther a or b are true.

CumulativeMeasure.getValue() is similar to

1



CumulativeMeasure.query(), except that it
returns the total value of the matching permu-
tations. For instance:

Value v =
cumulative.getValue("a OR b");

would return the total value of all belief per-
mutations where either a or b are true.

CumulativeMeasure.revise() is used for
modifying the belief values stored in the
knowledge base. It modifies the knowledge
base in-place and does not return any result.
For example:

cumulative.revise("a >= (0, 0.6)");

would revise the knowledge base such that all
belief permutations where a is true will add
up to the value (0, 0.6) or greater.

1.2 Query Syntax

Queries can be divided into two categories:
those that are used to retrieve sets of
BeliefPermutation objects or total values
thereof, and those that are used during revi-
sion to specify constraints over sets of these
objects.

A retrieval query has only one part: the query
string. This is a string in one of the following
forms:

a AND -b [AND c [AND ...]]

-a OR b [OR c [OR ...]]

a AND (-b OR -c)

a OR (b AND c).

Note that the - symbol can be used for nega-
tion. Also note that in last two forms, nested
phrases can recursively contain other nested
phrases.

To avoid ambiguity about the grouping of
terms, at any single level of recursion only one
of AND or OR can be used, but not both. This

is to avoid arbitrary interpretations of a query
such as: a AND b OR c.

A constraint query has three parts: a query
string, an operator, and a value string. A con-
straint query might look like one of the follow-
ing:

a = (1, 0.5)

a AND b <= c OR (d AND e).

The query string part is the same as above, and
determines which belief permutations will be
considered for revision.

The operator part is one of <=, >=, or =, and
indicates how the value of the matched per-
mutations should be limited.

Finally, the value string part is a phrase that
evaluates to a Cumulative Measure valuation
with a global rank and local probability. This
can be either a query string (which will re-
trieve results as in a normal query, and then
calculate the sum of those results) or a value
as written directly in the form (rank, prob-

ability). Ranks must be integers, but prob-
abilities can be a decimal value. Probabilities
in rank 0 must be in the range [0,1].

1.3 Setting Up Eclipse

To use this library, you will need to have
a recent version of Eclipse installed which
contains the Java libraries as well as JU-
nit 4.0. The easiest way to get this is to
download the pre-configured “Eclipse IDE for
Java Developers” at http://www.eclipse.

org/downloads/.

The code will be delivered as a zip archive of
a fully functional Eclipse project, which can
be simply extracted and opened in Eclipse.
To open the project in Eclipse, within the
File menu select Import…. Expand the Gen-
eral folder and select Existing Projects into
Workspace. Browse to the folder on your

2



computer where you extracted the archive and
click OK.

Once the project is opened, find the file
AllTests.java (under src/test). Right-
click on it and select Run As… > JUnit. If all
the tests pass, then that means the project has
been set up correctly and everything works.

To start experimenting with the code, open
the file SandboxTests.java (which is also un-
der src/test), and start writing your own
tests. Re-run AllTests.java at any point to
see the effects of the tests you write.

Continue to Section 1.4 to understand how
the existing code and test cases work, or jump
ahead to Section 2 for more information on
writing your own tests.

1.4 Test Cases

The following is a code excerpt showing a
common use case in the unit tests included
with the library:

cumulative.add("a");
cumulative.add("b");

assertTrue(value("a", 0, 0.5));
assertTrue(value("a AND b", 0, 0.25));
assertTrue(value("-a AND -b", 0, 0.25));

cumulative.revise("a >= (0, 0.6)");

assertTrue(value("a", 0, 0.6));
assertTrue(value("a AND b", 0, 0.3));
assertTrue(value("-a AND -b", 0, 0.2));

First, a cumulative measure is populated with
propositions (a and b in this case), and some
initial assertions are made about the initial be-
lief values of the propositions.

The initial assertions work as a sanity check to
ensure that the test is set up as the developer
expects, and also serve to very clearly docu-
ment what is being tested.

Then, a revision is made to the cumulative
measure, and finally, more assertions are
made to verify the revision had the intended
effect. Someone reading the test can easily see
a transition from a starting state to a modified
state by one single revision command.

The following test cases are included with the
library to demonstrate its functionality, and
are located in src/test:

AllTests.java This is a test suite, which runs
all of the other test cases. Run this to
demonstrate that everything is working
properly.

Literature_*.java These test cases demon-
strate examples taken from the litera-
ture on belief revision, specifically [1],
[2], [3], [4], [5].

ProjectCompletionTests.java This is a test
case which demonstrates a series of re-
vision steps given by Dr. Weydert to me
in an email on Monday 1st April, 2013. I
have used this as a litmus test for com-
pletion of the initial coding portion of
the assignment.

QueryTests.java This test case illustrates the
Query API and asserts that it catches
errors properly and recognizes valid
query syntax. See 1.2 for more infor-
mation on query syntax.

QueryTreeNodeTests.java This is a low-level
test case which tests an underlying li-
brary object used for parsing queries.
See 1.2 for more information on query
syntax.

QueryValueTests.java This is a simple test
case for demonstrating proper func-
tioning of the CumulativeMeasure

.getValue() method.

RevisionTests.java This simple test case
demonstrates that the Cumulative-

3



Measure.revise() method is working
properly.

SandboxTests.java This is a test case that
anyone can use to experiment with us-
ing the Cumulative Measures query and
revision library. See Section 2 for more
information.

TestBase.java This is an abstract base class
which houses the logic common to all
the test cases.

TokenListTests.java This is a low-level test
case to test an underlying library object
used for parsing queries. See 1.2 for
more information on query syntax.

ValueTests.java This demonstrates the func-
tionality of the Value object, which rep-
resents a Cumulative Measure value en-
compassing a global (integer) rank and
a local (real-valued) probabilistic valu-
ation.

2 Writing Your Own Tests

The test case called SandboxTests.java can
be used to create your own tests and exper-
iment with the Cumulative Measures query
and revision API.

Use Section 1.1 as a guide to experiment with
adding propositions to the knowledge base,
applying revision operations, and querying
the results to verify the results you expect.

Using the Eclipse debugger is extremely use-
ful! You can use it to stop execution during
a test and inspect the values of the knowledge
base and other variables. To debug a test, first
set a breakpoint by double-clicking in the mar-
gin (by the line number) of the line of code
where you would like to stop execution. Then
right-click on AllTests.java and select De-
bug As… > JUnit.

When the debugger stops on a line of code,
use your mouse to hover over the variable
that you are interested in (hovering over the
cumulative variable is a good place to start)
and Eclipse will display a pop-up with the
value of that variable. Pressing F6 will allow
execution to continue to the next line, so you
can observe the effects of each command as it
is run.

References

[1] A. Darwiche and J. Pearl. On the logic
of iterated belief revision. Artificial intel-
ligence, 89(1):1–29, 1997.

[2] N. Friedman and J.Y. Halpern. Plausibil-
ity measures: a user’s guide. In Proceed-
ings of the Eleventh conference on Uncer-
tainty in artificial intelligence, pages 175–
184. Morgan Kaufmann Publishers Inc.,
1995.

[3] S.M. Glaister. Symmetry and belief revi-
sion. Erkenntnis, 49(1):21–56, 1998.

[4] Y. Jin and M. Thielscher. Iterated be-
lief revision, revised. Artificial Intelligence,
171(1):1–18, 2007.

[5] E. Weydert. General belief measures. In
Proceedings of the Tenth international con-
ference on Uncertainty in artificial intelli-
gence, pages 575–582. Morgan Kaufmann
Publishers Inc., 1994.

4


