
J. Luke Scott

Information Security Basics
MiCS Program

University of Luxembourg

Final Project
Friday 15th June, 2012

Implementation of the SWU
Elliptic-Curve Algorithm

1 Introduction

Elliptic curves are two-dimensional equations in the
form y2 = x3 + ax + b. To be an elliptic curve,
the discriminant of this equation must not be zero
(mathematically: −16(4a3 + 27b2) 6= 0).

Graphing an elliptic curve reveals visually some of its
representative traits (Figure 1). First, they are sym-
metric across the x axis. Any x value greater than
xmin will correspond to exactly two points on the
curve. Second, any line that intersects the curve will
do so either at one point (this happens only when
a vertical line intersects the curve at xmin), at two
points (when a vertical line intersects at some other
point), or at three points (under any other condi-
tions).

-2 -1 1 2 3 4

-6

-4

-2

2

4

6

a: -5.0, b: 5.0

Figure 1: Simple example of an Elliptic Curve.

Other traits will be explained below; but for now, an
appropriate introduction is to say that the points on
an elliptic curve can be used as a set from which to
build Abelian groups.

The rest of this paper is organized as follows: in sec-
tion 2 and 3, I introduce using elliptic curves as Abe-
lian groups and how point addition works; in section

4 I discuss how the properties of Abelian groups al-
low elliptic curves to be used for cryptography, and
what kind ofmathematical challenges and tricks arise,
in section 5 I describe the SWU algorithm and its
uses, and finally, section 6 concludes with a demon-
strated use case for the SWU algorithm, using the
NIST Curve P-192 published in [7].

2 Elliptic Curve Operations

Point addition, identified by the “dot” operator in
Abelian groups (•) is the most basic operation on
elliptic curves. Graphically, adding points p and q

means drawing a line throughp andq, findingwhere
this line intersects the curve at a third point, and then
mirroring this point over the x axis. Figure 2 shows
a line going from p through 2p to the point where it
intersects the curve, which is then mirrored over the
x axis to find the result 3p.

Symmetrical points (points whose x values are the
same) will have a vertical line through them, which
will never meet the curve at a third point. Similarly,
the tangent line through the point where the curve
crosses the y axis will be vertical and will not cross
the curve at a second point. In these cases, the point
of intersection and the result of the addition opera-
tion is considered to be the “Point At Infinity”, which
functions as an identity element for the group (sec-
tion 3).

Point doubling, not surprisingly, is adding a point to
itself. Since there is no second point q to draw a line
through, the line usedwhen doublingp is considered
to be the tangent at point p. Figure 2 shows point
p being “doubled” by extending its tangent line to
−2p and then mirroring that point to the result 2p.

Point multiplication, intuitively, is adding a point to
itself n times. 2p = (p•p), 5p = (p•p•p•p•p),
etc. Point multiplication is a function applied to a
point and a scalar, not two points. It is a mapping
P × Z → P, where P ⊆ Ea,b(Fq), not P × P → P.

3 Elliptic Curves as Abelian Groups

Elliptic Curves are Abelian Groups, as they exhibit all
the necessary properties:

1



-2 -1 1 2 3 4

-6

-4

-2

2

4

6

a: -4.5, b: 5.0

p

-2p

2p

3p

-3p

Figure 2: Point addition on an Elliptic Curve.

Group Operation: Point Addition The “Dot” (•) op-
eration in Abelian groups can be anywell-defined
binary operation performed on members of a
class whose result is another element of the
same class. In the case of Elliptic Curves, this
operation is “Point Addition” (section 2), per-
formed on two points and returning a third point.

Closure The closure requirement in Abelian groups
states that the result of the • operation applied
to two members of a given group will always
return a member of the same group. In El-
liptic Curves, the closure property means that
adding two points on a given curve will always
return a point on the same curve. Of course, as
described in sections 3 and 3, the set “points on
the curve” must include the point at infinity.

Commutativity The • operation is commutative; that
is, p1 • p2 = p2 • p1.

Associativity When performing two • operations on
three points in series, order does not matter.
The result of p1 • (p2 • p3) is equal to (p1 •
p2) • p3.

Identity Element Elliptic curves have an additive iden-
tity element, known as the “Point at Inifinity”
(∞). Adding this to any other point on a curve
will result in the same point on the curve.

Inverse: P + -P = I Similar to the additive identity
property described above, there exists an In-
verse Element p ′ for each point p, such that
p•p ′ = ∞. In the case of Elliptic Curves, this
point p ′ is the “negative” of p. In more prac-
tical terms, this means that p ′ is p reflected
across the x axis; p ′ = (px,−py) where p =
(px, py).

4 Using Elliptic Curves for Cryptog-
raphy

The cryptographic premises of Elliptic Curve Cryp-
tography (ECC) are that elliptic curves can be used
as Abelian groups, and that the point addition and
multiplication operations provide security through
the “trap door” mechanism (section 4.2).

In ECC, performing efficient addition and multipli-
cation operations is a key consideration. A conve-
nient algorithm for doing point multiplication is the
double-and-add algorithm:

def doubleAndAdd(p, n):
binaryString = bin(n)[2:]
q = p
for i in range(1, len(binaryString)):

q = addPoints(q, q) # double
if binaryString[i] == '1':

q = addPoints(q, p) # add
return q

Other efficient algorithms exist, but this is an ex-
tremely simple, intuitive technique.

However, one reason not to use the double-and-add
algorithm is its vulnerability to side-channel attacks:
a sophisticated attacker could gain information about
the value of p or n by measuring the amount of
time or energy it takes to perform the calculation.
One technique which can resist this type of attack
is Montgomery’s Ladder [6], a modification of the
double-and-add algoritm that always performs the
same number of calculations and therefore uses con-
stant power regardless of inputs.

4.1 Modular Elliptic Curve Operations

Because elliptic curve cryptography uses curves over
finite fields Fq, mathematical operations modulo q

are used (Figure 3). Figure 4 and 5 show that the
equivalent point addition and multiplication opera-
tions can be done on modulo (finite field) and non-
modulo curves, but that the visual intuition breaks
down when using finite fields.

All of the important characteristics of Abelian groups
still hold, and concepts are all equivalent, with the
exception that modulo operations are inherently dif-
ficult to “undo”. In this paper, I use the standard
continuous-curve diagrams whenever possible, even
if the concept being illustrated is in practice done on

2



2 4 6 8 10 12

2

4

6

8

10

a: -5, b: 5, p: 11

Figure 3: Elliptic Curve using integers mod p (neg-
ative values from the original non-modulo curve are
shown in green).

-2 -1 1 2 3 4 5 6

-10

-5

5

10

a: -5.0, b: 5.0

p 2(p+p)

r
(p+p)+p
p+(p+p)
p+q

q+r

q
p+p

(p+q)+r

Figure 4: Point addition operations performed on a
non-modulo elliptic curve.

finite fields. (Figures 6-9, etc.)

4.2 Discrete Logarithm Problem

RSA and other public-key cryptography schemes use
the problem of factoring large numbers to provide
security [8]. Elliptic curve cryptography uses the
Discrete Logarithm problem: given the result of point
addition andmultiplication operations, it is prohibitively
hard for an attacker to know the inputs to those op-
erations [3]. This provides the “trap door” mecha-
nism needed in cryptographic processes: the party

2 4 6 8 10

2

4

6

8

10

a: -5, b: 5, p: 11
p

p+q

q+r

2(p+p)

(p+q)+r

p+p

Figure 5: The same point addition operations as in
Figure 4 performed on a modulo (finite field) elliptic
curve.

performing the process knows how to generate a re-
sult in the forward direction, but an attacker cannot
discover the key(s), clear text, or other inputs used
to generate that result without prior knowledge.

4.3 Benefits Over Other CryptographicMeth-
ods

A benefit of elliptic curve cryptographic methods is
the key size required. For a given level of security,
ECC generally requires much smaller keys than other
public-key schemes [1, 5]. The security of a proto-
col is measured in bits, where the value represents
the speed of the fastest known attack, in steps it will
take an attacker to break a key. Public-key schemes
are known to require larger keys than in symmet-
ric schemes, due to the fact that, by design, part of
the key data used to exchange information is pub-
lic knowledge. The security of such a system is de-
rived from mathematical properties of these com-
bined public/private keys, whereas the security of a
private key scheme is derived in large part from the
fact that the key(s) are private. In private schemes,
the only publicly visible information is the encrypted
ciphertext itself; there is no publicly-known key to
compare with some ciphertext from which to derive
knowledge about the original key.

This trait of private schemes means that their key
lengths are generally the same as their cryptographic
strength. To achieve 80-bit security, for instance,
one would require an 80-bit private key system. But
the equivalent strength using public-key encryption
would require much larger keys. DSA/RSA schemes
require a key length of around 1,500 for the same
level of security. However, the extra “cost” of the
publicly-shared key as comparedwith private schemes
is much less with ECC than with other public-key
schemes such as RSA. Only around 150 bits are needed
to achieve 80-bit security using ECC. (These are the
recommended appropriate levels for 2012 in [5]).

4.4 What Can We Do With Elliptic Curves?

A secure key exchange can be done using only the
properties of Abelian groups and a suitable hash func-
tion [2]:

• Assume a shared password pw between Alice
and Bob, a shared hash functionH(x), and se-

3



cret keys ka and kb, where
ka, kb, H(x) ∈ Zq.

• Alice sends A = ka • H(pw) to Bob. By the
closure property, A ∈ Zq.

• Bob sends B = kb • H(pw) to Alice. By the
closure property, B ∈ Zq.

• Alice computes Ka = ka • B = ka • (kb •
H(pw)).

• Bob computes Kb = kb • A = kb • (ka •
H(pw)).

• Because of the commutative property of Abe-
lian groups, ka • kb = kb • ka.

• This leads directly to K = Ka = Kb, a shared
private key:

K = Ka =ka • B
=ka • kb •H(pw)

=kb • ka •H(pw)

=kb •A
=Kb

Because elliptic curves can be used as Abelian groups
(section 3), they can be leveraged to perform this al-
gorithm, where the • operator in the algorithm is
point addition as described in section 3. The algo-
rithm as it is described above uses the group (Zq, •),
but it could easily be replaced by Ea,b(Fq, •) where
Fq is the field of points on an elliptic curve mod p,
• is the point addition operation, and Ea,b(F) de-
notes an elliptic curve using characteristic parame-
ters a and b over the field F. Also, the hash function
H(x) must be changed from H(x) : X → Zq to
H(x) : X → Ea,b(Fq) for a given a and b. If this
hash function is known then the process is simple:

• Alice sends A = ka • H(pw) to Bob. By the
closure property, A ∈ Ea,b(Fq) (Figure 6).

• Bob sends B = kb • H(pw) to Alice. By the
closure property, B ∈ Ea,b(Fq) (Figure 7).

• Alice computes ka •B = Ka ∈ Ea,b(Fq) (Fig-
ure 8).

• Bob computes kb • A = Kb ∈ Ea,b(Fq) (Fig-
ure 9).

• Again, K = Ka = Kb, a shared private key.
But now, K ∈ Ea,b(Fq).

-2 -1 1 2 3 4

-6

-4

-2

2

4

6

a: -5.0, b: 5.0

H(pw)
ka

A

Figure 6: Alice sends A = ka.H(pw) to Bob

-2 -1 1 2 3 4

-6

-4

-2

2

4

6

a: -5.0, b: 5.0

H(pw)
kb

B

Figure 7: Bob sends B = kb.H(pw) to Alice

There is one caveat here: Figures 6-9 show the point
addition operations being performed on a curve over
R because of its visual accessibility, but in practice,
the field Fq is used.

Other uses for elliptic curves are similar to those used
on normal finite fields:

A public-key encryption scheme, Integrated Encryp-
tion Scheme (IES), on elliptic curves is similar to the
RSA protocol: a prime number is used for a group
modulo operand, a group order n, generatorG, and
hash function are known for the group, plus the char-
acteristic parameters a and b are used to define the
curve over the finite field.

Elliptic curves can be used for digital signatures as
well using the ECDSA algorithm [10].

-2 -1 1 2 3 4

-6

-4

-2

2

4

6

a: -5.0, b: 5.0

H(pw)
kb

B

ka

K
ka.B

Figure 8: Alice computes K = ka.(kb.H(pw))

4



-2 -1 1 2 3 4

-6

-4

-2

2

4

6

a: -5.0, b: 5.0

H(pw)
ka

A K
kb.A

kb

Figure 9: Bob computes K = kb.(ka.H(pw))

5 The SWU Algorithm

In section 4.4 I mentioned that, given a hash value
H(x) ∈ Ea,b(Fq), a secret key exchange could be
performed. But how dowe get a hash functionH(x) :
X → Ea,b(Fq), with X some class that is useful to
us, such as Zq, or better yet, clear text?

Here I describe the Shallue-Woestijne-Ulas (SWU)
algorithm, first published in [9]. It is exactly this
hash function that I have described the need for:
SWU(x) : Fq → Ea,b(Fq). Here, I will describe the
SWU algorithm using the mapping Fq → Ea,b(Fq),
although it can be used to hash any scalar or plain-
text value into an elliptic curve by using the result of
an appropriate pre-hash function H(x) : X → Fq,
where X is an arbitrary class of values, as the input
to the SWU algorithm.

For instance, hashing a plaintext passphrase requires
a functionH(T) : T → Ea,b(Fq), where T might be
the set of all ASCII or Unicode strings. Assembling
such a hash function is as simple as using the follow-
ing hash function composition:

SWU(SHA1(x)) : T → Fq → Ea,b(Fq).

The SWU algorithm is based on Simplified UlasMaps:

U(t)2 = −g
(
X2(t)

)
· g

(
X3(t)

)
,

where, for some a, b 6= 0:

g(x) = x3 + ax+ b,

X2(t) =
−b

a

(
1+

1

t4 − t2

)
,

X3(t) = −t2X2(t),

and
U(t) = t3g(X2(t)).

Because U(t)2 = −g
(
X2(t)

)
· g

(
X3(t)

)
, and be-

cause −1 cannot be a square, we know that either
g
(
X2(t)

)
or g

(
X3(t)

)
must be a square. By sim-

ply finding which one has a square root mod p, and
then calculating the appropriate

√
g(f(t)), we are

able to create a unique point on a curve using irre-
versible operations.

5.1 Quadratic Residue

Determining whether a value has a square root mod
q, then, becomes important. Thankfully, it is a sim-
ple matter of employing the Legendre Symbol calcu-
lation first published in [4] – I use the notation lx for
brevity:

lx =
(x
q

)
= x

(
p−1
2

)
For a prime q, q 6= 2, lx = 1 if x 6= 0 and is a square
modulo q, lx = 0 if x = 0modulo q, and lx = −1 if
x 6= 0 and is not a square modulo q. So by calculat-
ing lx for x = g

(
X2(t)

)
and x = g

(
X3(t)

)
, we will

know which of the two has a square root modulo q.

Once we knowwhich g
(
f(t)

)
has a square root mod-

uloq, we can use it to create a point
(
f(t),

√
g
(
f(t)

) )
on Ea,b(Fq).

5.2 Square Roots mod q

Wehave determinedwhat value two potential hashed
points would have, and we have determined which
of the two points we will use. One final step in creat-
ing this point is to actually calculate the square root
modulo q of g

(
f(t)

)
.

Conveniently, when our prime number q is equal to
3 mod 4, we can compute a square root mod q very
easily:

√
x mod q = x

(
(q+1)

4

)
.

5.3 Putting it Together

By incorporating this final technique into the hash-
ing algorithm, we arrive at:

SWU(t) =
(
X2(t), g

(
X2(t)

) (q+1)
4

)

5



if g(X2(t)) is a square, or

SWU(t) =
(
X3(t), g

(
X3(t)

) (q+1)
4

)
otherwise (because g

(
X3(t)

)
is a square if g

(
X2(t)

)
is not).

6 Application and Conclusion

For this paper, I have written code to demonstrate
the use of the SWU algorithm to perform a simple
key exchange (see the Appendix, section 7). By using
a plaintext passphrase as the only privately shared
information between the two sides before the ex-
change, as well as the common knowledge outlined
in section 4.4, I have demonstrated that the algo-
rithm does indeed allow two parties to arrive at a
common shared secret point on an elliptic curve suit-
able for use in ECC cryptographic functions.

At a lower level of detail, one also sees that this script
demonstrates the steps of first using SHA-1 to map
from clear text to Zq, and using the SWU algorithm
as a map from Zq to Ea,bFq ′ . The second step, inci-
dentally, includes an inherent re-assignment of t ∈
Zq (where q is the maximum value of a SHA-1 hash)
to (t mod q ′) ∈ Zq ′ (where q ′ is that defined for
NIST curve P-192) and therefore (t mod q ′) ∈ Fq ′

– the domain of the elliptic curve. Also one can see
in the example output that the SWU algorithm de-
cides which of two potential results to return: that
derived from X2 or X3. Using this generated shared
secret, Alice and Bob are able to exchange encrypted
messages using a symmetric protocol.

In conclusion, I have shown the underlying mathe-
matical theory of Elliptic Curve Cryptography based
on Abelian Groups, I have explained the advantage
that ECC has over other cryptographic methods, and
I have demonstrated the use of the SWU algorithm
for generating points on an elliptic curve and subse-
quently a shared secret between two parties.

7 Appendix

Figure 11 shows the execution output of a Python
script demonstrating a SPEKE session in which a pri-
vate shared key is generated. Figure 12 shows the
source code for the sample script. (All source code
will be submitted along with this paper).

References

[1] E. Barker, W. Barker, W. Burr, W. Polk, and
M. Smid. Recommendation for key manage-
ment–part 1: General (revision 3). NIST special
publication, 800:57, 2011.

[2] D.P. Jablon. Strong password-only authenti-
cated key exchange. ACM SIGCOMM Computer
Communication Review, 26(5):5–26, 1996.

[3] N. Koblitz. Elliptic curve cryptosystems. Math-
ematics of computation, 48(177):203–209,
1987.

[4] A.M. Legendre. Essai sur la theorie des nombres.
Chez Duprat, 1808.

[5] A.K. Lenstra and E.R. Verheul. Selecting cryp-
tographic key sizes. Journal of cryptology,
14(4):255–293, 2001.

[6] P.L. Montgomery. Speeding the pollard and
elliptic curve methods of factorization. Math-
ematics of computation, 48(177):243–264,
1987.

[7] National Institute of Standards and Technol-
ogy (NIST). Federal information processing
standards (fips) pub 186-3. Digital Signature
Standard (DSS), Issued June, 2009.

[8] R.L. Rivest, A. Shamir, and L. Adleman. A
method for obtaining digital signatures and
public-key cryptosystems. Communications of
the ACM, 21(2):120–126, 1978.

[9] A. Shallue and C. van de Woestijne. Construc-
tion of rational points on elliptic curves over
finite fields. Algorithmic number theory, pages
510–524, 2006.

[10] S Vanstone. Responses to nist’s proposal. Com-
munications of the ACM, 35:50–52, 1992.

6



def swuHash(self, t):
self.out.indent("SWU Hash Algorithm starting...")
alpha = -(t * t)
alphaDenominator = mod(alpha ** 2 + alpha, self.p)
x2 = -(self.b / self.a) * (1 + 1 / alphaDenominator)
h2 = mod(x2 ** 3 + self.a * x2 + self.b, self.p)
exponent = (self.p + 1) / 4

if self.legendre(h2) == 1:
self.out.put("Found g(X2(t)) is a perfect square.")
self.out.unIndent()
return (x2, h2 ** exponent)

self.out.put("Found g(X3(t)) is a perfect square.")
x3 = alpha * x2
h3 = x3 ** 3 + self.a * x3 + self.b
self.out.unIndent()
return (x3, h3 ** exponent)

def legendre(self, x):
# Legendre symbol:
# 1 if x is Quadratic Residue mod p
# 0 if x == 0 mod p
# -1 otherwise
exponent = ((self.p - 1) / 2)
return x ** exponent

Figure 10: Listing of the SWU algorithm written in Python.

7



Loading Sage...
Starting /home/luke/Projects/cryptoFinalProject/python/SpekeSwu.py...

Alice and Bob are both generating h(pw) from passphrase: 'a cow jumped over the moon'...
integer representation of sha1(pw):

370209994692993959654855452181727349094605495589
SWU Hash Algorithm starting...

Found g(X2(t)) is a perfect square.
h(pw) = SWU(sha1(pw)): (3.2e+57, 2.1e+57)

Alice is generating a private key using a random int 730...
SWU Hash Algorithm starting...

Found g(X3(t)) is a perfect square.
Alice's private key: (2.5e+57, 1.3e+57)
EllipticCurve.addPoints

p1: (2.5e+57, 1.3e+57)
p2: (3.2e+57, 2.1e+57)
returning: (2.1e+56, 4.5e+56)

Alice generated public key A = a.h(pw): (2.1e+56, 4.5e+56)

Bob is generating a private key using a random int 1202...
SWU Hash Algorithm starting...

Found g(X2(t)) is a perfect square.
Bob's private key: (1.2e+56, 2.5e+57)
EllipticCurve.addPoints

p1: (1.2e+56, 2.5e+57)
p2: (3.2e+57, 2.1e+57)
returning: (4e+57, 1.4e+57)

Bob generated public key B = b.h(pw): (4e+57, 1.4e+57)

Bob and Alice are exchanging keys...
EllipticCurve.addPoints

p1: (2.5e+57, 1.3e+57)
p2: (4e+57, 1.4e+57)
returning: (4.1e+57, 4.4e+57)

Alice generated Ka = a.(b.(h(pw))): (4.1e+57, 4.4e+57)
EllipticCurve.addPoints

p1: (1.2e+56, 2.5e+57)
p2: (2.1e+56, 4.5e+56)
returning: (4.1e+57, 4.4e+57)

Bob generated Kb = b.(a.(h(pw))): (4.1e+57, 4.4e+57)
Keys match! Alice and Bob now have a new shared secret!
Done.

Figure 11: Output of a sample SPEKE session showing Alice and Bob generating a shared private key based on
two randomly-generated private keys and a shared passphrase.

8



#!/usr/bin/sage
from EllipticCurve import EllipticCurveModRing

from hashlib import sha1
from random import randint, seed

class SpekeSwu(EllipticCurveModRing):
KNOWN_PASSPHRASE = "a cow jumped over the moon"

# NIST Curve P-192 (ref: FIPS PUB 186-3)
p = 6277101735386680763835789423207666416083908700390324961279
n = 6277101735386680763835789423176059013767194773182842284081
a = -3
b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1
Gx = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012
Gy = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811

def createEllipticCurve(self):
seed()
self.out.indent("\nAlice and Bob are both generating h(pw) from passphrase: '%s'..." %

self.KNOWN_PASSPHRASE)

sha1Hash = sha1()
sha1Hash.update(self.KNOWN_PASSPHRASE)
sha1HashInt = int(sha1Hash.hexdigest(), 16)
self.printNumber("integer representation of sha1(pw)", sha1HashInt)

self.h_pw = self.swuHash(sha1HashInt)
self.printPoint("h(pw) = SWU(sha1(pw))", self.h_pw)
self.out.unIndent()

t = randint(0, 10000)
self.out.indent("\nAlice is generating a private key using a random int %d..." % t)
self.alice = self.swuHash(t)
self.printPoint("Alice's private key", self.alice)
self.a_h_pw = self.addPoints(self.alice, self.h_pw)
self.printPoint("Alice generated public key A = a.h(pw)", self.a_h_pw)
self.out.unIndent()

t = randint(0, 10000)
self.out.indent("\nBob is generating a private key using a random int %d..." % t)
self.bob = self.swuHash(t)
self.printPoint("Bob's private key", self.bob)
self.b_h_pw = self.addPoints(self.bob, self.h_pw)
self.printPoint("Bob generated public key B = b.h(pw)", self.b_h_pw)
self.out.unIndent()

self.out.indent("\nBob and Alice are exchanging keys...")
self.ka = self.addPoints(self.alice, self.b_h_pw)
self.printPoint("Alice generated Ka = a.(b.(h(pw)))", self.ka)

self.kb = self.addPoints(self.bob, self.a_h_pw)
self.printPoint("Bob generated Kb = b.(a.(h(pw)))", self.kb)
self.out.unIndent()

if self.ka[0] == self.kb[0] and self.ka[1] == self.kb[1]:
self.out.put("Keys match! Alice and Bob now have a new shared secret!")

else:
self.out.put("ERROR: something went wrong.")

if __name__ == "__main__":
SpekeSwu().run()

Figure 12: Source code for SPEKE sample.

9


