
Luke Scott

Intelligent Systems: Problem Solving
MiCS Program

University of Luxembourg

Genetic Algorithms Lab
Friday 23rd December, 2011

Genetic Algorithm for the Traveling
Salesman Problem

1 Introduction

This paper describes a Genetic Algorithm solution for
the Traveling Salesman Problem (TSP). In this algo-
rithm, a Chromosome consists of a list of unique in-
teger alleles; these integers in turn represent cities,
whose coordinates are read in from a text file during
the initialization of the algorithm. The task of the al-
gorithm is to successively refine these chromosomes by
re-ordering the allele integers (making sure they re-
main unique) and scoring each new combination based
on the total weight (i.e. total distance). A high score
corresponds to a low weight; that is, this algorithm
seeks a cost-minimizing solution.

2 Refactoring

For this assignment, we were given the source code to
“ssGA: Steady State GA” [1] as a starting point. This
code is intended for two use cases: OneMAX (maximiz-
ing the number of 1’s in a binary string) and P-Peaks
(a hamming-distance related scoring mechanism).

Finding the code lacking in readability and structure,
I spent some time refactoring before adding TSP logic.
Among other things, I restructured the class hierar-
chy to provide better structural clarity and more man-
ageable seams between functional units; that is, in-
stead of rewriting code such that the original use cases
no longer worked, I preserved and improved existing
functionality while allowing extension into the TSP do-
main.

The primary challenge while restructuring the classes
was to present a single Chromosome API as a proxy

to different underlying data structures, with the origi-
nal chromosome storing an array of byte values and
a new chromosome storing an array of int values
representing the city IDs. A conflict exists between
the method signatures that appear in the two chro-
mosome types, namely for getters and setters. Be-
cause int and byte values are primitives, there is
no way to accommodate them both without contam-
inating the inheritance hierarchy with leaky abstrac-
tions, un-implemented methods, odd method signa-
tures, etc.1 Instead, I chose to implement getters and
setters in the subclasses and add cast commands to the
objects from which I call them.

3 Implementation

After refactoring, I implemented six new classes:

City: A simple helper class to store coordinates and
compute distances between cities.

IntChromosome: A new chromosome type whose al-
leles are int values. IntChromosome does not
require its alleles to be unique; Chromosome
classes are data structures with virtually no logic.

IntegerChecklist: This class represents a list of
integers which can be checked off one
by one. The list is initialized as a range
from 0 to n, and at any time the meth-
ods getValuesNotYetCheckedOff() or
isCheckedOff() can be called to query the
state of the checklist. It is used during the
crossover step to make sure that duplicate in-
tegers are not introduced into the chromosome
being created.

ProblemTSP: This class defines min-value route
weight scoring via resultHasBeenFound(),
isScore1BetterThanScore2() and
evaluate(), chromosome initial-
ization for the TSP algorithm via
getTemplateChromosome(), and input
file reading via readCitiesFromFile().

1If the allele values were objects instead of primitives, this could
be solved using Java’s Generics mechanism – the parent class
would be identified as Chromosome<? extends Allele>
with subclasses IntChromosome<IntAllele> and
ByteChromosome<ByteAllele>. However, this approach is
a bit heavyweight. It would incur the cost of class instantiation
and access, in my estimation, on the order of hundreds of times
more often than when using primitives.

1

RandomIntSequence: This class simply generates a
random-order permutation of a set of integers.
It is used to initialize the alleles of new chro-
mosomes, and also during the last part of the
crossover step to insert city IDs at the end of the
child chromosome in random order.

UniqueIntegersChromosomeStrategy: This class
uses the Strategy design pattern to decouple
a chromosome from how it is used. It defines
how crossover and mutation processes are
executed, and also how to create new chromo-
somes compatible with this strategy through the
getTemplateChromosome() factory method.

3.1 Chromosome Templates

Each problem depends on a specific type of chromo-
some (int, byte, etc.), and a given problem might
place further restrictions on how chromosomes are ini-
tialized in some way. For example, ProblemTSP uses
chromosome templates to implement a technique I call
the Zero-City Anchor. Here is a brief explanation:

There are potentially many different TSP solutions
which are isomorphic to each other – in other words,
routes that follow the same path but start at differ-
ent nodes along the path. If two chromosomes repre-
senting isomorphic paths were chosen as parents and
crossed with each other, their offspring would have
a higher weight than either parent, despite the par-
ents being similar. This is because the crossover point
would occur at very different geographic locations for
the respective parents. Crossing over at this point
means introducing a new edge of higher weight than
the one that was removed.

I addressed this by introducing a constraint in my al-
gorithm that all chromosomes at all times must have
city 0 at position 0. This is the Zero-City Anchor. It
serves the purpose of representing all members of an
equivalence class (i.e. isomorphic solutions) by a sin-
gle integer array2, and to some extent it will also align
semi-isomorphic solutions.

By having the Population class call Problem
.getTemplateChromosome() to generate new

2Actually, two integer arrays are needed to represent a given iso-
morphism. The TSP problem, as we have defined it, is non-
directed, and therefore any path is equivalent to the same path
in reverse. However, using the Zero-City Anchor and array rep-
resentation, these paths would be considered unique solutions.

Chromosome objects through the Chromosome Tem-
plate mechanism, I allow for chromosome creation
to be customized for the problem in which it is being
used.3 Furthermore, various problems may have some
features in common; there may be other groups of
graph traversal problems besides the TSP that require
unique-integer chromosomes to be used in different
ways. This use case is accommodated by splitting off
the ChromosomeStrategy class, which also has its
own getTemplateChromosome() factory method.4

This example illustrates that, in the context of chro-
mosome initialization, a ChromosomeStrategy is a
special case of the default random-value initialization
of the Chromosome classes, and a Problem is a spe-
cial case of a ChromosomeStrategy. This is why
getTemplateChromosome() shows up in two places
in addition to the Chromosome constructors.

3.2 Crossover Logic

Crossing over chromosomes whose alleles must remain
unique also poses the challenge of handling duplicate
alleles between the inherited portions of the first and
second parent. Given two parent chromosomes, C1 =
a|b and C2 = c|d, where | represents the randomly
chosen crossover point, the offspring a|d would con-
tain duplicates whenever c is not a permutation of a
(and therefore d is not a permutation of b). This will
be true in most cases.

So an alternative d ′ must be created, consisting of the
elements x ∈ b, in some order. How these elements
are ordered will have a significant impact on the behav-
ior of the algorithm. A few techniques are possible:

Maximize Original Order: In this technique, d ′ is or-
dered the same as C2 = c|d, with duplicates
removed. This is a very simple and efficient solu-
tion, and is likely to reflect some characteristic of
C2 in the child, because as much of its ordering is
preserved as possible. The downside to this tech-

3By default, this operation defers to the Chromosome constructor,
or to a ChromosomeStrategy.getTemplateChromosome()
factory method, but Problem.getTemplateChromosome()
always retains the ability to do the final step of chromosome cre-
ation.

4If you are confused at this point, here are the steps of chromo-
some initialization: the Population constructor calls Problem
.getTemplateChromosome() while creating its initial pop-
ulation of chromosomes, which calls ChromosomeStrategy
.getTemplateChromosome(), which calls the Chromosome
constructor.

2

nique is that, in the Zero-City Anchor approach
I am using, it is likely to introduce long edges at
the crossover points.

Single-Origin Order: Here, d ′ will be composed of
the elements of the set x ∈ d, x /∈ a in the order
they occurred in d, followed by a randomized se-
lection of the remaining elements x ∈ b, x /∈ d.
The advantage here is that, because all routes
start at the “Zero City”, all chromosomes with
good scores could potentially have similar over-
all paths. This feature, in my estimation, will
give a high probability of creating shorter edges
at the crossover point between a and d. This is
the strategy I used for this assignment.

Dual-Origin Order: Here, d ′ will be composed as in
the previous technique, but with the exception
that, instead of randomizing the remainder ele-
ments, they will instead be ordered as they had
occurred in b.

Dual Crossover Points: In this solution, two
crossover points are selected instead of one.
(For this example I will describe two parents
C1 = a|b|c and C2 = d|e|f.) The offspring
is composed of a|e ′|c ′, where e ′ and c ′ are
defined similarly as above. The effect of this
solution is to select statistically equivalent
numbers of ordered elements from C1 and C2.

Continuous Merge: This is essentially the Dual
Crossover technique taken to its logical limit.
Here, there would be no real concept of a
crossover point, but instead the chromosomes
would be merged together from start to finish,
choosing each next allele from one parent or the
other and adding it to the offspring. However,
I am afraid that it might have a tendency to
overwrite or negate the qualities of each parent
which had made them strong candidates in the
first place, essentially creating random offspring.

Additional strategies orthogonal to those above
present themselves: one of these is a “random order
reversal”: On a randomized basis, the parent alleles
could be copied to the offspring from right to left in-
stead of left to right, essentially retaining more of the
right side of the chromosome than the left – reversing
the problems described above. Instead of retaining the
characteristic of parent segment a from parent C1, the
characteristic of segmentd fromC2would be retained.

Another strategy would be to implement an adaptive
“seeding” mechanism, which would find cities close to
each other in the input data and pre-group them some-
how, so that during template creation, crossover and
mutation, edges within these groups are favored more
than edges that span multiple groups. [2]

With the possible exception of Continuous Merge, I be-
lieve all these techniques are worth studying further.
I have not done research into what kinds of crossover
logic other people have tried, so that would be the best
starting point.

3.3 Unit Testing

Because of their importance to the overall
function of the algorithm, and because they
are buried rather deeply in the code and
cannot easily report their health, I imple-
mented unit tests for IntegerChecklistTest,
RandomIntSequenceTest, ProblemTSPTest and
UniqueIntegersChromosomeStrategy to make
sure they were maintaining their state, creating chro-
mosomes, calculating scores, and doing crossovers
and mutations correctly.

4 Performance and Tuning

I did most of my performance testing with ch150.txt,
because it is a larger data set. I later verified all re-
sults against Berlin52.txt and the results are similar;
I have noted wherever the number of cities makes a
difference.

4.1 Test Batches

I ran my performance tests in batches so that I could
collect results efficiently. Each batch consisted of 100
individual test runs, where a test run is a single execu-
tion of the original for loop. This loop is what does
the work of inheriting and mutating the chromosomes.
The original code had this loop running 50.000 times;
in my tests I tried ranges from 1.000 up to 500.000.

I ran 18 full batches altogether, plus additional ex-
ploratory tests and partial batches. Starting with the
fourth batch, I used randomized parameter selection
to give evenly distributed inputs without having to
guess at which parameter values might be meaningful.

3

This approach also minimizes outside factors, such as
caching or load issues that may come up when running
multiple consecutive tests with large populations. For
each test batch, I set upper and lower bounds for popu-
lation, mutation and crossover probability. I changed
the code to output results in tabular format, which I
copied into a spreadsheet for graphing.

4.2 Parameters

Each batch was run with parameters from the follow-
ing list:

Probability of Crossover: The probability that a given
pair of selected chromosomes will be crossed
over. If parents are not crossed over, one parent
is returned by the crossover function unchanged.

Mutations Per Chromosome: On average, how many
mutations (swaps) will happen per propagation.
This is not a deterministic value, but rather gets
translated into a per-allele probability by divid-
ing it by the number of alleles per chromosome.

Binary Tournament Rounds: How many levels of re-
cursion are used when selecting a parent chro-
mosome. The original code effectively used a
value of zero, meaning no recursion steps were
done and a comparison between two randomly-
chosen individuals was done. A value of 1 means
that two individuals are compared, each of which
are chosen by another level of recursion – in ef-
fect, a two-round tournament with four contes-
tants. The total number of contestants will al-
ways be 2n+1.

Genetic Iterations: How many crossover-and-mutate
steps will be performed on the population during
a single test run.

Target Score: If this score is reached during a test run,
the algorithm will terminate before reaching the
number of genetic iterations specified above. I
set this to zero for my tests because I wanted to
find the best score possible.

Population Size: How many individuals are selected
from by the algorithm for each genetic iteration.

4.3 Test Results

Due to limited space, I will only provide commentary
on some representative results.

Batches 1-3 used a fixed population size of 512, and
gave essentially random results. I tried different pop-
ulation sizes and found a distinct response in perfor-
mance (especially good below ∼20), so I decided to
randomize the population size for batches 4-18, gener-
ally testing ranges between 2 and 50, plus a few valida-
tion tests between 8 and 512. I was initially surprised
to find that quality decreases with a larger sample pop-
ulation, but this does make sense: it is undoubtedly
because smaller populations increase the chance that
a given chromosome will be chosen more than once.
That is, during the selection/crossover step, the bigger
the population is, the more likely it is that genes will be
selected for the first time, and therefore offspring are
being created primarily between parents with random
chromosomes.

I also found a relationship between population size and
number of genetic iterations. When more genetic it-
erations are used, the population sizes that perform
well become larger on average. In batch 9 and 10,
I examined this relationship by performing the same
tests with 500.000 genetic iterations and 10.000 iter-
ations, respectively (Fig. 1). In addition to favoring
larger populations, tests with more iterations found
better routes – roughly half as long using 500.000 iter-
ations as with 10.000. Processing time scales linearly
with number of genetic iterations, so this equates to a
50-fold increase in processing time while only doubling
the quality of the result.

It is true that, depending on context, the value of these
two resources may be completely different and this
trade-off is acceptable, but I wished to decouple this re-
lationship and achieve the higher quality results, lever-
aging the resources of a larger population indepen-
dently of other variables, using fewer genetic iterations
and therefore less processing time.

For this strategy to work, I needed a mechanism by
which to choose more intelligently which chromo-
somes will be paired for crossover. I tried using a se-
ries of binary tournaments, rather than a single one.
Instead of two pairs of random selections being com-
pared against their partner, I ran a four-round tourna-
ment among eight pairs, resulting in two champions.
Anticipating that this might eventually scale to a 2n so-
lution, I parameterized the new method I created for

4

this step using the Binary Tournament Rounds param-
eter mentioned above. To test this new algorithm, I
kept all values the same as before, including the num-
ber of iterations at a relatively small 50.000.

Surprisingly, adding recursion to the binary tourna-
ment does not improve results, as batches 11-15 show
(Fig. 2, 3 and 4), and they do add computational cost
(on the order of 200ms for four rounds and 800ms for
six rounds). Further work in this area could include de-
signing a more intelligent multi-round selection mech-
anism, but results were so poor that I consider this a
very low priority.

Finally, there is a correlation between the number of
cities in the problem and the population size that is ef-
fective in solving the problem. Solving a problem with
fewer cities causes the algorithm to behave as if it is
doing more genetic iterations, in that the range of pop-
ulation sizes that are effective in finding good solutions
broadens (Compare fig. 5 #1 with 3 #1). I believe this
is because having fewer cities corresponds to having
more of a homogeneous solution space (because there
are fewer possible solutions); therefore any randomly
selected solution will be closer to ideal than it would
be if there were more cities. Parent chromosomes cho-
sen from a population with this characteristic will have
a higher likelihood of producing successful offspring.

5 Conclusion and Future Work

Certainly, the main variable that determines the qual-
ity of results is the number of genetic iterations. Typi-
cal route weights for ch150.txt were around 22.000 for
5.000 iterations; 19.000 for 10.000 iterations; 13.500
for 50.000 iterations, 11.000 for 100.000 iterations,
and 10.700 for 500.000 iterations. There is an obvious
correlation here, with significantly decreasing rates of
return.

As I ran the tests, I found a definitive “sweet spot” with
these parameter values:

Population: 4-17 for low numbers of genetic itera-
tions or recursion steps, or for large numbers of
cities. The upper range for this goes up to around
35-45 for the opposite characteristics.

Mutations per Chromosome: 0.6-1.4, expanding to
0.8-2.2 for high numbers of iterations or recur-
sion steps, or low numbers of cities

Crossover Probability: I found very little statistical
significance here. Generally, the range 0.5-1.0
was good, but no trend emerged beyond that. It
did not seem to be correlated to any other vari-
ables.

In my opinion, future work should be focused on
crossover logic and chromosome initialization, as de-
scribed in the Crossover Logic section. It is also possi-
ble that some more intelligent chromosome selection
logic could be created, but as I had mentioned, this
does not look likely to produce good results.

6 Appendix: Result Graphs

These graphs show performance (size of the bubbles)
as a function of population size (X-axis) and both mu-
tation and crossover rates (Y-axis).

References

[1] J. Cabello Galisteo. ssga: Steady state ga.
http://neo.lcc.uma.es/software/ssga/, 2008.

[2] Michael LaLena. Traveling salesman problem us-
ing genetic algorithms. http://www.lalena.
com/AI/Tsp/, 1996-2011.

5

Figure 1: ch150.txt (150 cities), batch 9 (500,000 iterations) and 10 (10,000 iterations)

Batch Iterations Population Recursion Steps Time (best 10, in ms) Average Weight (best 10)
11 50,000 2-50 0 683 14,309
12 50,000 8-50 4 847 13,435
13 50,000 8-512 4 898 14,629
14 50,000 16-512 6 1,268 13,801
15 50,000 20-50 6 1,934 13,648

Figure 2: Averages of the 10 best results for batches 11-15 (lower weight = better score)

Figure 3: ch150.txt (150 cities), batch 11 (no recursion) and 12 (four recursion steps)

6

Figure 4: ch150.txt (150 cities), batch 13 (four recursion steps) and 14 (six recursion steps)

Figure 5: Berlin52.txt (52 cities), runs of 1.000, 3.162 and 10.000 iterations

Figure 6: Berlin52.txt (52 cities), runs of 31.620, 100.000 and 316.200 iterations

7

