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Abstract

Agent Based Modeling systems are being used in increasingly diverse applica-
tions every year. The data sources and agent models used in most of these sys-
tems operate under synchronized views of space and time, avoiding the need for
mediation between scales. However, mediation must be done if systems are to in-
corporate models whose scales are not synchronous, an issue especially pertinent
for fields relying on unrelated, externally provided data sets, as is the case with
geostatistical or geopolitical systems. Here we document a framework, API, and
proof of concept which provides the functionality needed to mediate between
scales of heterogeneous agents. Our solution and its reference platform (Think-
lab) use strict semantic rules and ontology-basedmodeling to achieve consistency
and reusability.
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Chapter 1

Introduction

This project seeks to develop an efficient, high quality, general purpose solution
which can represent software agents with heterogeneous perceptions of space
and time, and allow them to interact properly and efficiently in simulations.
Agents with such heterogeneous scales have differing views of how space and
time are segmented, categorized, and observed. The representation of internal
state and observed state is affected by such views, which in turn affect how
these agents interact with and respond to each other. As a proof of concept,
this system will be contributed as the agent subsystem of the Thinklab modeling
software stack, a semantically driven, open source infrastructure used for major
environmental decision support systems.

1.1 Context

Agent systems in current research fall into two categories: those whose primary
purpose is problem solving, and those whose primary purpose is simulation. In
both types of systems, the characteristic traits of the system emerge from the in-
teractions of individual agents; in many cases, complex system dynamics emerge
from relatively simple agent definitions.
In a problem-solving system, the quality of the emergent behavior of the system
is the measure of success. The selection of individual agents and their behavior
during their life cycles is unimportant, as long as their behaviors lead to an
accurate or effective solution. These systems generally operate under a (job shop)
scheduling paradigm: a number of tasks, sometimes with deadlines, are allocated
to a collection of resources to achieve sometimes competing objectives.
One example of problem-solving systems is a trading agent system, which
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Chapter 1: Introduction

searches for solutions to the multiple-objective, multiple-constraint Trading
Agent problem [51]. This problem is a real-world scenario in which travel agen-
cies, supply chain variables, auctions, and other constantly varying game scenar-
ios must be navigated within time constraints. Another example is an ant-colony
system for solving the Traveling Salesman problem.
In a simulation system, individual behaviors of the agents are chosen so as to
match reality, and the consequences of behavior on the higher-level system are
the object of study. Because of this difference, the system is designed with differ-
ent constraints. Agents are modeled to correspond to a real-world behavior, and
the system must implement that behavior as it is modeled. The system cannot se-
lect different agent types to provide better performance; rather, the system must
provide a performant environment within which arbitrary agents can be defined
with semantic accuracy and simulated with precision.
Because our system is built for general-purpose modeling, we are tasked with
the latter requirements. We are required to ensure that the agents modeled in
our system are a fair reflection of the real world. As a consequence, we are also
required to accept data sources and agent semantics which reflect subjective
views of space and time.
A speed/quality trade-off exists, as in most systems. The trade-off in our system
can be managed by the modeler by selecting higher or lower quality scale me-
diation strategies, more or less detailed data sources, etc. Our goal is to fulfill
these constraints efficiently by implementing an efficient modeling environment,
rather than selecting the optimal agent type(s) for a given task.

1.2 Motivation

Problem solving and simulation systems differ in some ways but can share design
and implementation techniques. The primary difference between the two is that
the measure of success of a problem solving system is the accuracy of its final
result, whereas a simulation system is measured by the accuracy of the individual
behaviors of the agents in the system.
All agent simulation systems known to us at the time of writing use a view of
space/time which is inherently consistent (see Figure 1.1). In systems with con-
sistent space/time, agents which operate at different scales share common dimen-
sional units and have a lowest common denominator (which is the base unit for
the system). In this way, agents can easily translate values between themselves.
No complex scale mediation semantics would be needed in these systems beyond
simple scaling functions.

2



Chapter 1: Introduction

Feature Existing Systems Our Requirement
Heterogeneous Scales use common base units unrelated units/segmentation
Agents’ Location in Space generally cell-based arbitrary (cells, polygons, etc)
Temporal Semantics uniform time steps arbitrary, per-agent durations
Scale Mediation not necessary automated, configurable solution
Subjective Agent Perception not explicitly modeled API should be provided

Table 1.1: Our itemized requirements as they currently exist in other systems, and as we
would require

However, we would like to loosen this constraint so that our system is able to in-
corporate raw data or models using arbitrary scales. Strict semantics is the guide
for agent definition, and accordingly agents may have different scales with no re-
lation to each other. The representation chosen for space and time should not be
forced to agree in simultaneously represented agents. It is possible that elevation
data is represented using meters over a square-kilometer sample grid, rainfall
data is aggregated in inches over square miles, and software agents reason and
navigate using subjective categories over polygons defined in latitude/longitude
units. In this case, no single cohesive grid or measurement system exists, even
though they all represent semantically compatible concepts of earth’s surface.
In the real world, as agents (robots) interact with each other, different internal
representations are negotiated by automatic, usually unconscious, translation.
Differences in perception are usually not obvious to the agents. Creating a virtual
system where these differing internal representations are honored while comput-
ing observed states for all agents, while preserving accuracy and performance, is
a difficult challenge and the main purpose of this work.
In Chapter 3, we identify three main components necessary for a multiple-scale
system: semantics, scale mediation, and negotiation of agent perception. The
scale mediation component is the one with arguably the most serious perfor-
mance implications. Many academic fields have contributed thinking to the
topic of multivariate data interpolation, from which we draw influence; 2D and
3D image processing, for instance, has been invested in by both industry and
academia. The programming paradigm called Functional Reactive Programming
(FRP) was an inspiration in shaping our thinking about time as a unique dimen-
sion with characteristics not shared in e.g. 3-dimensional space. FRP was also a
rich ground for developing computational models that deal appropriately with
potentially fatal combinatorial explosions.
Other agent-based system designs are discussed in Section 2.1, which includes
ontologies of agent types that exist in these systems. Other academic fields that
contribute to this topic are discussed in the following sections of this chapter.

3
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1.3 Contributions
In this thesis we describe the following contributions to the current literature:

Modular Scale Mediation Strategy: By using a modular scale mediation mech-
anism, we can fully decouple agents’ subjective scales (views of space and
time, with other dimensions allowed but not implemented). This allows
software agents of arbitrary design to interact with each other and with
various real-world data sets without regard to the scales used internally by
the others. By standardizing our system using formal ontologies, the scale
conversions can be done in context-appropriate ways without the involve-
ment of agent developers or field researchers.

Globally-Synchronous, Locally-Subjective Time Scales: Time is treated as a
unique dimension which is allowed to differ between agents as the other
dimensions are. The way we implement time also enforces forward causal-
ity and synchronous observations, while allowing agents’ individual per-
ceptions and computations to be completely decoupled from each other’s.
This has the advantage of providing a highly parallelizable computation
paradigm with explicit synchronization points.

Circular Reference Avoidance: Our time period semantics treat the time-
period boundaries as exclusive-start, inclusive-end, which is opposite of
the predominant inclusive-exclusive model. By doing this, we introduce:
1) an approximation of the real-world temporal delays between cause and
effect, while retaining the simplicity of a temporally-synchronized simu-
lation; and 2) an outright avoidance of circular references in simulated
environments.

Efficient and Flexible Agent-State Semantics: By dictating that agents make
observations and decisions at specific instants in time and their decisions
lead to agent-states over the intervals bounded by these instants, we provide
a computational model which is very efficient and yet provides agent-state
functions which can express complex, continuously-changing values that
can be observed at any instant during the agent’s lifetime.

1.4 Outline
The rest of this thesis is organized as follows:
In Chapter 2 we discuss related work in literature which informs the formulation
of the various problems we have addressed and the approaches we have used in
our design.

4
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Chapter 3 is a statement of the various problems which must be solved to create
multiple-scale simulations. We also describe two use case scenarios which exem-
plify the requirements that a system should fulfill, as well as being illustrative of
the domain and typical uses for which Thinklab is currently used.
In Chapter 4 we present our semantic model and system design for addressing
all of the elements from our problem statement. This chapter also gives our
reasoning for choosing some unorthodox techniques, namely exclusive-inclusive
time periods and globally-synchronous, locally-subjective temporal scales.
Chapter 5 describes how we have implemented the modules described in our
design. We also discuss our proof of concept which demonstrates the functioning
of the modules.
Chapter 6 concludes with a summary of our work, as well as future work which
we believe could make our solutions more flexible and applicable beyond the use
cases to which we have limited ourselves.
As is the case with any project which overlaps with multiple disciplines, in this
project we are forced to choose terminology which fits our purposes, at the pos-
sible expense of abusing or stretching definitions in some of the overlapping
disciplines. In the glossary we list the terms which may have varying interpreta-
tions depending on the background of the reader, as well as some terms whose
definitions are simplified for the purposes of this thesis. In the latter case, we of-
ten draw finer distinctions between concepts in Thinklab than we express in this
thesis because some implementation details and domain-specific considerations
go outside the scope of this work.
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Chapter 2

Related Work

This project aims to contribute to a semantic meta-modeling system, where
the primary issue is scale mediation among heterogeneous agents and data
sources [57, 58, 55, 56]. To accomplish our goal, consistent semantics had to be
developed. Hence, this project primarily overlaps with others in the areas of se-
mantic agent modeling and multivariate interpolation (which we refer to as scale
mediation). Going forward, the target infrastructure (Thinklab) will be used for
more complex scenarios, and performance and flexibility issues will most likely
surface such that other areas of research are expected to be beneficial.
The rest of this chapter is organized as follows:
Section 2.1 discusses the agent modeling landscape in literature. This section
places Thinklab into context and motivates its existence by explaining the as-
sumptions in other systems with reference to our wish list for an ontology-based
modeling platform.
Section 2.2 describes the Functional Reactive Programming paradigm, which is
a primary inspiration for our semantic model of temporal observation and the
progression of agent-states through time. We have also gained insight on how
Functional-Reactive designs can lead to efficient implementation techniques for
complex simulated worlds.
In Section 2.3, we discuss the field of Geospatial Interpolation, which most
closely resembles our task of mediating between heterogeneous agent scales in
simulations. This field is useful for us on two levels: 1) it is centered around the
idea of combining geostatistical data sets to form holistic understandings, which
is also Thinklab’s raison d’être; and 2) it emphasizes that not just scales but also
scale mediation strategies must be heterogeneous, which is to say that a scale
translation approach cannot be a one-size-fits-all proposition.

7



Chapter 2: Related Work

1
2
3

Autonomous Agents
(Possibly heterogeneous)

Shared World

Behavioral Protocols

Figure 2.1: The main components of an agent modeling system

Continuing from above, we introduce Image and Signal interpolation in Section
2.4. This section is a simplification of the previous, because image and signal in-
terpolation are done in well-controlled environments. The simplifications allow
us to study idealized solutions (generally spline-based vector representation) as
landmarks. We would like to approach the directness of these approaches in our
own work.
Sections 2.5 and 2.6 describe related fields which we have not studied deeply
but leave their application for future work.

2.1 Agent Modeling and Simulation

Thinklab is ultimately an agent modeling system, as the agent paradigm can be
considered a generalization in the field of modeling that can encompass most
other paradigms in use today. Here we describe Thinklab and some prominent
Multi-Agent Systems (MAS) and the main ideas in MAS literature which had an
impact on our work.
Figure 2.1 shows the general components of an agent modeling system. Au-
tonomous agents of possibly heterogeneous type, structure, and internal and ex-
ternal behavior occupy a shared, simulated world. Their interactions are medi-
ated by the system through well-defined protocols. The agents’ individual and
group behaviors, the properties of the shared world, and the system protocols
lead to emergent behavior which is more complex than what can be captured by
deterministic models. This property of agent modeling systems makes it an ef-
fective tool for analyzing complex systems of interaction in the natural sciences,
economics, sociology, etc.

8
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2.1.1 Thinklab Modeling Platform

Thinklab is a semantic meta-modeling platform which aims to address the task of
integrated modeling as a reconciliation of strong semantics with modeling practice.
The rationale behind its development is to help achieve advantages (such as mod-
ularity, flexibility, validation, and integration of multiple paradigms and multi-
ple scales) that have remained unrealized in modeling to this day. To achieve
this goal, Thinklab keeps the logical representation of the modeled world distinct
from the procedural knowledge that allows its simulation. The logical represen-
tation is modeled using concepts and relationships that comprise the Thinklab
abstract knowledge base, built around a set of ontologies that provide a solid foun-
dation to describe what the aspects of interest of the modeled world are, with no
attempt to resolve how they may be simulated.
In the procedural knowledge base, models are defined that allow users to produce
observations of the concepts contained in the abstract knowledge base. Models
can consist of algorithms or datasets; from the Thinklab point of view, the two
just represent different ways to observe a concept. Both the abstract and the
model knowledge can be expressed using a compact domain-specific language.
Semantic meta-modeling uses the idea of observation as the unifying theme to
define a general way to model physical objects and phenomena. A model is
seen as a strategy to produce observations of a concept that comes from an ac-
cepted knowledge base. Compatibility of different models as components of the
same computation is guaranteed by the semantic equivalence of the concept they
model, established through standard machine reasoning. When supported by ad-
equate infrastructure, this approach enables the integration of many modeling
paradigms that are often used and described separately, for example spatially-
explicit to process- and agent-based models, or probabilistic vs. deterministic
models. This conceptualization provides a natural path to reach goals in model-
ing that have frequently been discussed, but not demonstrated so far to their full
potential, including modular modeling, multiple-paradigm modeling, multiple-
scale modeling and structurally variable modeling.
The Thinklab software stack consists of ThinkQL (TQL), a domain-specific lan-
guage, and the Thinklab server, which performs model reasoning and process-
ing. Various clients can be used; normally the system is used with the ThinkCap
Eclipse client plug-in. Thinklab aims to allow uncoordinated extensibility of the
model base and to be a modular, multiple-scale and multiple-paradigm modeling
infrastructure.
The objects and processes in Thinklab are defined using the OWL ontology lan-
guage [35] in its OWL-DL incarnation that is guaranteed decidable. Thinklab
is delivered with an initial knowledge base consisting of established pre-defined

9
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ontologies for foundational concepts and for common concepts used in physi-
cal modeling and data processing. At the moment, the DOLCE [19] ontology
provides the foundational basis for all specifications, and the SWEET [41] on-
tologies from NASA provide an initial base of knowledge that can directly be
used for model building. DOLCE and SWEET have been provisionally aligned by
the Thinklab developers.
The basic function of Thinklab is to simulate observations. The semantics of the
subject of observation (equivalent to agents in multi-agent systems terminology)
drives the observation process: data are the literal properties of the object, while
object properties point to other objects. This corresponds closely to the OWL con-
ceptual model and maps directly to the established description logics model. A
simulation is generally driven by observing one top-level root subject, leading to
a cascading series of sub-observations which collectively generate a simulated
world.
When building a model, the root subject observed and any data known before any
observation takes place (abstracts in DOLCE parlance, including extents of space
and time where the object is located) constitutes a context for any future observa-
tion, whose result will be constrained to satisfy all the properties required for the
result to be semantically consistent. Because the data usually contain space and
time as topologies (e.g. grid cells or polygons for space; linear steps for time),
any data properties whose state is defined indirectly (for example through num-
bers or categories) will have multiple values, in number corresponding to the
Cartesian product of the different states implied by the topologies adopted. The
Thinklab resolution engine uses machine reasoning to choose the best modeling
strategy in a given context, using the models and data available in the procedu-
ral knowledge base under the guide of the relationships stated in the abstract
knowledge.
The TQL language is used both to define the knowledge base using a model in-
struction, which provides semantic annotations of data and algorithms, and to
interrogate it using an observe instruction, which creates observed objects that
are the equivalent of output datasets.
Models can be composed according to context, for instance when a single context
spans multiple areas (e.g. when the context spans both land and ocean). If
different models are appropriate in different areas, then these models will be
selected and combined to resolve the same observable concept for an optimal
overall description.
To generate results from a modeling session, the observe action is called on a
concept or an incomplete object, and Thinklab builds a dependency graph that
corresponds to the observation strategy that can produce the requested values.
The graph is then compiled into a scientific workflow which corresponds to the

10



Chapter 2: Related Work

actual computation. (Scientific workflows are well documented in literature and
are beyond the scope of this thesis [2].) The workflow is compiled into bytecode
and run on a virtual machine to define the output states and sub-agents that
compose the final dataset delivered to the modeler.

2.1.2 Other Agent Modeling and Simulation Systems

Many other agent-based modeling and simulation platforms exist today for a
wide variety of both general and specific uses. A full review of all systems is be-
yond the scope of this thesis. Reviews of have been compiled for general-purpose
agent systems [1], systems for analyzing land use and cover change [46], climate
change [5], and general environmental informatics [3]. Other special-purpose
systems exist; our reviews focus on environmental systems because Thinklab is
currently employed in this domain.
Special-purpose agent systems are commonly built using general-purpose plat-
forms, and so do not provide any re-usable features beyond what is available
in the underlying platforms. Occasionally they are simple, custom-built systems,
but these also provide very little re-usability. Custom-built systems will normally
be effective at solving only the problems they are built for, and do not provide
solutions or reusable system components for general problems such as arbitrary-
scale semantics and translation.
The main general-purpose agent systems are: SWARM [22, 36, 53] and its deriva-
tive systems such as Repast [42, 43], JADE and other FIPA-compliant systems [6],
NetLogo [54], and MASON [31]. Cougaar [21] is also used in many research
projects, but it is primarily a problem solving system rather than a simulation
system. It does not contain built-in concepts of time, space, or scale.
Thinklab was designed because no existing system contains all the features de-
sired by the research team, and none would even be well suited to customizing
for our purposes because of fundamental assumptions made, or core design prin-
ciples used. Typical problems which exist in other agent systems are:

• They use I/O files instead of data stores, and other fixed, non-adaptive
structures.

• Agent concepts which do not align with our purposes, whether too simple
(FLAME), too complex (JADE), or with architectures that do not work well
for us.

• Time and space are only abstract (machine) values without inherent seman-
tics, or are not capable of expressing non-synchronous or relative values per
agent.

11
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• They are opaque in general, not lending themselves to usability or extensi-
bility.

Thinklab is designed from the ground up to take shortcomings from existing
systems into consideration and provide a good foundation of agent simulation
features, a plug-in interface allowing future expansion, and an effective path to
sharing of resources, reusability and modularity aimed to serve a distributed and
diverse user community.

2.1.3 Ontology of Agents in Literature

This section is a catalog of themost common agent types that have been identified
in literature [4, 8, 9, 44, 50]. Agents can be categorized by individual or group
behavior, capability, construction, etc. We have chosen to categorize agents by
the two most basic agent features: reasoning ability, and cooperation ability. The
list below is ordered from the most simple to the most complex.

Information Carrier Agents have no reasoning ability; they
exist to represent information or inanimate objects in the
agent simulation environment. Athanasiadis [4] discusses
the distinction between information carrier agents and deci-
sion maker agents, of which the remaining list is composed.
In Thinklab, information carrier agents normally represent
messages or collected field data (see Section 4.1.1 for more
information).

1
2
3

Reactive Agents are the most simple type of agents capable
of interacting with the world around them. They incorporate
a subsumption architecture, using layers of reactive rules or
rule sets. Rule filters are compared to inputs and/or agent
state until a match is found; the actions associated with the
matching rule(s) are then carried out. Layers can subsume,
or override, each other based on priorities dictated at build
time.
Deliberative Agents generally follow the Belief-Desire-
Intention (BDI) architecture introduced by Bratman [8],
which means they maintain state and can reason methodi-
cally; in general they can be considered Turing machines.
BDI indicates these agents’ semantic model: they maintain
state as a set of Beliefs, goals and priorities as a set of Desires,
and they attempt to achieve goals by executing Intentions.
We focus more on agent capabilities than internal workings,
so we refer to these agents simply as deliberative agents.
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1
2

Hybrid (Layered Deliberative) Agents use a layered archi-
tecture to provide both reactive and deliberative functional-
ity. A controller decides where to direct input and which of
the behavior(s) to perform.
Social (Deliberative + Messaging) Agents know about
and can communicate with each other. Their communica-
tion is often restricted by agent type or group boundaries.
They can inherit hybrid/layered functionally if desired.
Organized (Deliberative + Messaging + Organization)
Agents can communicate with and reason about each other,
and can also form into social and organizational structures.
These structures are well studied in literature, and lead to
useful emergent behaviors, especially in problem solving or
socioeconomic simulations.

In addition to this rather linear taxonomy, Nwana [44] differentiates based on
mobility, describing agents as either static ormobile, as well as arbitrary attribute-
based categories – namely cooperation, learning, and autonomy. We have incorpo-
rated these two classifications implicitly without making specific references to
them. With respect to static vs. mobile, all agents in Thinklab are capable of ex-
isting at a specific location (or over a specific spatial region), in the sense that all
agents can specify whether they exist over space and/or time. The specification
of agent behavior in Thinklab is expected to be closely tied to their semantics
as specified by the ontologies adopted; the relevant details of the project in this
respect are not fully finalized at the moment. For the purposes of this work, any
agents which have a spatial component are capable of moving, whether they
choose to or not. As for arbitrary attributes, we defer to object-oriented software
design to provide the modelers and developers with more fine-grained control
beyond the categories above.
Russel [50] chooses not to categorize based on internal features and instead de-
fines agents by the external contracts they fulfill, in terms of perceptions and ac-
tions, and presents optimization techniques by which they may do so. We define
agents in similar external terms, but have chosen to categorize them by more tra-
ditional internal structures because these fit with pre-existing models that have
been incorporated into Thinklab.
Primarily, the information carrier and deliberative agent types are used in our ini-
tial Thinklab prototype. This is not explicitly restricted, but the default agents
we have built fall into these two categories. Raw data sources (such as topologi-
cal maps) and messages are of the first type, and normal “agents” are generally
the second type. At the time of writing, no social or organized agents had been
created, but the mechanisms exist to create them if desired.
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2.1.4 Ontology of Communication Structures in Literature

In Multi-Agent Systems, agent interaction patterns are arguably more important
than agents’ internal workings. Here we describe the most common patterns
from literature; the review by Horling and Lesser was extremely useful here [24].
Other papers we reviewed were from Carley [10], Jennings [25], Macal [32, 33],
and Parrot [47], but these named no communication structures not present in
Horling and Lesser’s work.

Hierarchies are simple, tree-like structures. Agents can communicate with their
parents and children; agents higher in the structure have more visibility
and influence.

Holarchies are like hierarchies with portions of the tree grouped together as
holons. Holons share common characteristics, allowing functionality to be
segmented. Also, connections can be made between holons across the struc-
ture for a more web-like arrangement. In their web-like form, holarchies
can be compared to small-world networks [59].

Coalitions allow agents to arrange themselves into temporary, goal-based teams.
Agents are expected to be selfish rather than altruistic or team-driven (co-
operative), and so agents use the coalitions to meet their own needs. Each
coalition is generally a flat structure internally, with the possibility of one
leader or representative which coordinates tasks internally and communi-
cation externally.

Teams are similar to coalitions but with cooperative agents, long-running team
membership, and long-running goals and priorities. Internally, teams can
be structured using roles which may change over time.

Congregations are grouping structures similar to coalitions and teams, with a
unique feature that congregations are not goal-driven. They are formed
by mutual, general self-interest (rather than specific or temporary goal-
oriented interests) and similarity in the members’ capabilities. Congrega-
tions are long-lasting but dynamic, and communication between congrega-
tions is generally limited.

Societies introduce social contracts among grouped agents. The contracts
(known as social laws or norms) define external behaviors of agents; agents
may break the terms of a contract but will be sanctioned if they do so. Soci-
eties allow system designers to state goals and policies explicitly while still
allowing a measure of flexibility and decentralization in agent interactions.

Federations are quasi-political structures in which agents delegate representa-
tion to a single leader of each federation. Leaders are expected to negotiate

14



Chapter 2: Related Work

on their constituents’ behalf to achieve cooperation with other federations,
and the constituents are given a single, consistent contract by which to op-
erate. Federations also allow these localized contracts to differ, so they are
effective for integrating heterogeneous actors.

Matrix Organizations introduce the idea of categories of influence. Each direc-
tion of an agent matrix corresponds to a group within the population; rows
may be peers in a social group while columns represent professional team
(with a manager in the top row leading the team). In these structures,
agents prioritize influences and commitments from various directions to
guide their decisions.

Compound Organizations is a term which acknowledges that agent interac-
tions do not fit cleanly into categories, but are usually some combination
of the above ideas along with system-specific needs. Different structures
may be blended, superimposed, or structured hierarchically. Horling and
Lesser mention that some combinations work especially well together, for
instance teams with hierarchical internal structures.

In Thinklab, no explicit communication structures have been created. We an-
ticipate that developers will need a fine-grained set of such specifications, and
again the core semantics will be the guide to selecting specific types of agents,
communication capabilities and behaviors based on inheritance of agent iden-
tity from core semantic types. In our current use case scenarios communication
structures are of obvious importance (for instance, both scenarios involve govern-
ment/family interactions, suggesting at least a hierarchy). As Horling mentions,
some structures emerge out of patterns of behavior, rather than being dictated
from the top down. Our government/family actors observe each other directly
as a basis for their interactions, and so could be described as having a simple
emergent communication structure.

Messaging Systems

Agent coordination systems normally employ specialized agent roles to facilitate
agent interaction, for instance yellow pages (directory agents) [24]. Some systems
allow messaging based on a blackboard system, in which all agents can see all
messages and can respond as desired [21, 23].
The type of messaging system used in an agent platform is for the most part
orthogonal to the interaction system(s) employed, but some agent organization
structures will imply certain messaging characteristics. For instance, any kind
of team- or coalition-based structure would suggest that the messaging system
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can be partitioned by team, group, or specialty; structures with privileged roles
would likely require visibility constraints in the messaging system; etc.
A closing mention should be given to FIPA standards which apply to messaging,
and imply certain agent coordination structures, such as contract nets [6]. FIPA
and FIPA-based systems do not directly enforce agent structures, but their usage
does fit roughly within the categorizations given here.

2.2 Functional Reactive Programming

Functional Reactive Programming (FRP) is a programming paradigm which grew
out of the need for efficient and intuitive representations of objects and actions
in computer animation. It is an improvement over discrete-representation tech-
niques which tightly couple computation and (real-world) display of images and
animations. FRP begins with the basic assumption that time and other dimen-
sions are continuous, and should be explicitly treated as such [13, 15].
Historically, computer animation had been done using frames of raster images
to represent objects in a way that resembles the operation of computer monitors,
which use pixels to display images that are refreshed at some discrete time inter-
val. When animating raster representations of objects in space, all values of all
locations on the monitor are re-computed, even if few of their values change at
any given time step. This model of computer animation is computationally very
expensive.
Pixel image formats and frame-based animation mimic the computer monitor in
a software form. At the lowest level, image display software must operate using
discrete forms if it is to interact with a computer monitor, but there is no limita-
tion to how an object must be represented in software. The only requirement is
that the representation can be converted into an appropriate format for display,
and it must unambiguously describe the object.
In reality, objects move fluidly through time with no correlation to the arbitrary
time steps imposed by screen refresh rates, processor or memory frequencies,
discrete command steps, etc., and they are also composed of continuous shapes
rather than pixels. The goal of FRP was to decouple the task of representing
fluid objects from any specific representational scale by introducing layers of
abstraction. It exposes these qualities of the real world explicitly, rather than
hiding them behind artificial representations of pixels and time steps. Discretiza-
tion can be introduced as needed during rendering, so that an object’s observed
values are synchronized with screen refresh rates and pixel density.
The main primitives used in FRP are behaviors and events, introduced in work by
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Elliott et al. which preceded FRP [14, 12]. Time in FRP is treated as a total order
(any two instants in time must be comparable) but there is no requirement that
it be represented using discrete time steps of equal size or even absolute scalar
values [13].
Behaviors and events were originally imagined in an idealized way that resisted
efficient implementation, especially using an imperative language. However, El-
liott’s later paper sheds light on implementation by introducing the push/pull
design, an elegant solution for dividing behaviors into their discrete and continu-
ous components and treating each one separately (see Section 2.2.1)[15].
FRP specifically acknowledges that some phenomena may be arbitrarily short,
and therefore may avoid detection in discrete environments with coarse sam-
pling rates. It uses the term events to describe these phenomena which are essen-
tially discrete momentary occurrences. One implementation of FRP used Interval
Analysis [52] to reduce the computational effort in event detection, which is es-
sentially a technique for detecting periods of time where events will provably
not happen. These time periods are not analyzed for events, and instead compu-
tational effort is focused on periods of time where the events might happen.

2.2.1 Push-Pull FRP

Push-Pull FRP [15] is an implementation of FRP which takes more optimiza-
tion details into consideration. It treats data differently according to whether
it changes discretely or continuously: discretely-changing, instantaneous events
are pushed to any component of the system which is affected (much like an Ob-
server design pattern [18]), and between these discrete events, continuously-
changing values are pulled by the observer on demand.
In Push-Pull FRP, time-varying values are segmented into non-reactive, continu-
ous time functions which occupy the time periods between discrete, momentary
reactive values. Real-world activity is modeled using reactive behaviors which are
composed of these two components.
Push-Pull FRP treats discrete changes in a manner similar to event-driven pro-
gramming, and so is a good basis upon which to design a semantic model which
can be implemented in an object-oriented, imperative language (Thinklab is writ-
ten mainly in Java). Code written in an event-driven system has the purpose of
responding to events in a system, rather than dictating an order of execution, as
is the case in script-based or procedural programs. Event-driven programming
and FRP’s discrete event semantics are also similar to the Observer design pat-
tern [18].
Push-Pull FRP treats discrete changes as events which cannot be known in ad-
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vance and are handled as they occur. This concept also informs our treatment of
discrete events in a simulation (see Section 4.4.5).

2.3 Geospatial Interpolation
The problem of translating between arbitrary scales takes many different forms in
various research areas. One area of research is geospatial interploation, which
must be used for some scale translations in our use case scenarios. Mitas and
Mitasova [38, 37] give a very concise overview of interpolation strategies in a
geostatistical setting. The strategies they describe allow observed phenomena in
d-dimensional space which is collected in irregular sample patterns to be inter-
polated into a target representation with arbitrary resolution.
In their words, the interpolation problem can be described as: given theN values
of a studied phenomenon zj, j = 1, . . . ,N measured at discrete points

rj = (x
[1]
j , x

[2]
j , . . . , x

[d]
j ), j = 1, . . . ,N

within a certain region of d-dimensional space, find a d-dimensional variate func-
tion F(r)which passes through the given points; that is, that fulfills the condition:

F(rj) = zj, j = 1, . . . ,N

Mitas and Mitasova mention that multiple-scale modeling will require interpo-
lation techniques which can incorporate arbitrary scales, and they propose fur-
ther work into more general solutions as well as drawing inspiration from the
image-processing field. They suggest that wavelet techniques are a group of
approaches with good potential in multivariate environments, a conclusion we
have also come to. Their suggestion would imply that image interpolation and
vector representation are good resources from which to draw, which we have
done.
Various interpolation categories covered in their work are described in the fol-
lowing subsections:

2.3.1 Local Neighborhood Approaches

The intuition behind these approaches is straightforward and practical: Any
given data point will probably have a stronger relationship with the data points
in its vicinity than with points further away. This makes a lot of sense in geo-
statistics (e.g. rainfall or other weather patterns, elevation, pollution, etc.) and
has broad support in the physical sciences in general.
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But there are also computational and semantic benefits. These approaches allow
segmentation of the interpolation process; they allow the problem to be broken
into separate computational tasks, enabling parallel computation. Segmentation
does not guarantee that the result of an interpolation can be represented in a
modular and concise fashion. For instance, although IDW can be implemented
as a localized process able to define a totally smooth surface from input points,
it does not generate a result which can be represented concisely.

Inverse Distance Weighted Interpolation (IDW)

IDW generates interpolated points by computing a weighted average of input
data points. The weights in the weighted average are proportional to the distance
and scaled by some exponent p (usually p = 2).
To reduce computational expense incurred for points which are far away from
the point being generated (and therefore not weighted very strongly), a localized
neighborhood can be defined from which to sample: either the closest n points,
or the points that fall within a radius r or a grid ([x−a . . . x+a], [y−a . . .y+a]).
The most simplistic version of IDW would be to consider only the closest input
point for each computation (n = 1), resulting in a d-dimensional step function
for F(r). Evaluating F(r) at any point r = (x

[1]
i , . . . , x

[d]
i ) would return the closest

zj = F(x
[1]
j , . . . , x

[d]
j ).

For two-dimensional space, a generated data point f(x,y) would be based on
some number of input values v(xi,yi) in the neighborhood of (x,y):

f(x,y) ≈
∑

iwiv(xi,yi)∑
iwi

where wi ∝ (distancei)
p

≈
∑

i

(√
(x− xi)2 + (y− yi)2

)p
v(xi,yi)∑

i

(√
(x− xi)2 + (y− yi)2

)p
This formulation unfortunately cannot be represented as a vector or a set of con-
tinuous curves; instead, specific points must be generated from this estimation
based on the input data. This has implications which make it less desirable for
our purposes (see Section 4.2.2).
Also, IDW without modifications will lead to flat spots at each generated point,
which has the effect of disturbing derivative (slope) information. Modifications
have been proposed by many authors for working around this problem and pre-
serving an approximation of slope. Another shortcoming is that curves generated
by IDW will not generally pass through the sampled points, but rather approx-
imate them. A curve is based on a weighted average of some number of local
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points, and therefore will never pass through a local maximum orminimum point.
This can be a minor or very serious down side, depending on the application.

Natural Neighbor

This technique begins with a Voronoi tessellation of the input data points. An
interpolated point is generated as a weighted average of values from nearby re-
gions. The weights are generated by computing a hypothetical tessellated region
around the point as it would exist if it were included in the data set. Weights
are equivalent to the proportion of the newly generated region which would lie
in each of the previous regions. These weights are used to compute a weighted
average of the corresponding values from each of the previous regions which
overlap with this new hypothetical region:

F(rj) =

n∑
i=1

wiF(ri)

This is an arbitrary-dimensional approach and generates smooth (rubber-sheet
like) surfaces. Additional blended gradient information computed from the data
points can be incorporated to smooth further while preserving first and second
order derivatives. These characteristics make it a good general-purpose interpo-
lation mechanism for geostatistics and other fields.
The most straightforward version of this technique is two-dimensional linear
interpolation between neighboring points spaced evenly in the x direction.

Triangulated Irregular Network (TIN)

This approach generates triangle-shaped surfaces from individual data points by
connecting all trios of neighboring points. The points can be chosen by various
means; Delaunay triangulation selects points such that the circumcircle around
any triangle does not contain any other point. The surfaces represented by the
triangles are used as bivariate (or multivariate, in arbitrary dimensions) functions
which can be solved for an interpolated value F(ri). TIN can also employ non-
linear techniques to blend the edges of the surfaces together by incorporating
the derivatives (first or first and second) of the surfaces in the result. This will
also retain differentiability of the result.
TIN techniques perform well computationally because they are localized and
therefore parallelizable, however they do not give the highest quality results.
Because the triangles are exact, continuous representations of the interpolation,
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this approach is one which satisfies our preference for continuous intermediate
representation (Section 4.2.2).

Rectangle-Based Methods

What Mitas and Mitasova describe as Rectangle-Based Methods are included in
this thesis as spline techniques. These techniques are well-represented in image
processing and interpolation fields. Splines represent d-dimensional shapes as
vectors with curvature that comes from generating functions. These are dis-
cussed in Section 2.4, with attention given to wavelet techniques commonly
used to scale raster images up or down. Using wavelets is conceptually simi-
lar to Fourier-based approaches, in that wave-shaped generating functions form
a basis for discretizing a continuous signal by storing function parameters. Later,
re-constructing that signal from the stored parameters is a matter of plugging the
parameters into the generating functions, possibly integrating many sub-signals
together.
Spline methods can optionally apply tension to the vectors that are given, as a
mechanism for smoothing the result. One specific algorithm from Mitas’ and
Mitasova’s prior work [40, 39] uses a smoothing and tension approach which
preserves all orders of derivatives, so that mathematical analysis on the resulting
data set can be performed. This can be useful in geostatistical sciences where
such derivatives are important, for instance using runoff and erosion models in
which slope influences water flow characteristics.
Other benefits to smoothing are to make a rendered image more visually pleas-
ing, or even to improve accuracy in cases where interpolation using general al-
gorithms alone results in jagged or bumpy intersections, or reducing aliasing
patterns.

2.3.2 Geostatistical Approaches

These approaches generally inherit from Kriging Methods, a family of interpola-
tion methods developed for geostatistics in which certainty can be established for
all generated data points along with the generated points themselves. This type
of algorithm will generate a curve, and so can be rendered or incorporated into
models directly, but Kriging methods are unique because they also generate con-
fidence intervals which express the range of possible values based on statistical
certainty.
However, Kriging methods are computationally expensive, requiring specialized
resources for large data sets [28]. Using them should therefore be restricted to

21



Chapter 2: Related Work

cases where their unique benefits are needed.

2.3.3 Variational Approach

This technique minimizes the sum of the deviations and maximizes the smooth-
ness of the result. In some applications of this technique, mathematical problems
may be introduced which prevent accurate analysis of a resulting surface. This
is similar to the Spline methods with tension mentioned in this section, but uses a
different representational primitive.

2.3.4 Application-Specific Approaches

These domain-specific approaches can take many forms.
Stream Enforcement is an example of how domain-specific metadata can be used
to tune or refine the results of a more general algorithm. As is the case with
other examples from Mitas’ and Mitasova’s work, stream enforcement is a tech-
nique used in geostatistics. It superimposes the shapes of known streams and
rivers over a topological map being generated from surveyed sample points. The
algorithm converting sample points into a smooth surface (especially using tri-
angulation techniques mentioned here) may make assumptions that dam-shaped
land masses exist in valleys when they actually do not. The assumption is rea-
sonable; two sample points which are very close together will often be in fact
joined by a mass of land. But in valleys with steep slopes on either side, this as-
sumption does not hold. Stream maps which are superimposed over the sample
sets are domain-specific metadata which inform the algorithm that these land
masses should not be created between two points divided by a stream.
Metadata techniques like this are effective ways of introducing domain-specific
knowledge into a general algorithm. They are ways for algorithms to incorporate
additional information, in this case that a stream runs through a valley being
rendered, to help select between interpretations of the original data.

2.4 Image and Signal Interpolation
Image interpolation uses general multidimensional interpolation approaches to
convert from one pixel representation either into a continuous representation or
another pixel representation. Often times, the algorithm used will generate a
vector-based (continuous) intermediate result. This topic can be seen as a sim-
plification of Geospatial Interpolation, because image and signal interpolation
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are done in well-controlled environments. Input values lie strictly within known
boundaries and represent phenomena with very consistent physical properties.
Representational formats are primarily matrix-based, using regular sized units,
and generally only one interpolation strategy is used in each setting.
De Boor’s review of splines [11] covers interpolation techniques as well as splines
and spline types in general. This book is a de facto reference for vector-based
representation of data points, and is not strictly an image-representation study.
It focuses on splines, which are extensively used in image interpolation, so we
include it here.
Kopf [29] presents a new technique for generating high quality vector images
from low-resolution bitmaps. His work is also an example of domain-specific
vectorization, a general category of adaptation procedures by which a general
interpolation approach can be tuned by inferring beliefs about what the low-
resolution image represents. More on domain-specific tuning is given in 2.3.4.
Image interpolation is a good resource for our work because the underlying al-
gorithms tend to be general. They deal with color values distributed over multi-
dimensional space (whether two- or three-dimensional), which is not very dif-
ferent than arbitrary state values as a function of multi-dimensional space and
time. Many of the underlying processes used in image interpolation will work in
arbitrary dimensions (even beyond four-dimensional space-time), so this field is
rich with resources for our work.
Image interpolation generally uses the appearance of an image as the standard for
quality. In some cases, a certain amount of accuracy or a specific trait is required.
For instance, in elevation interpolation where differentiability is needed, these
techniques may not apply. Image interpolation is a good starting point, providing
procedures in general cases, and it is also a good platform for developing the
components of an interopolation solution.

2.4.1 Lanczos Resampling

Lanczos resampling applies a sinc function to coded signals above the Nyquist fre-
quency, from the Nyquist–Shannon sampling theorem [26]. This is the frequency
which is double (half the wavelength of) the highest-frequency input one wishes
to encode. Using Lanczos resampling results in a very accurate representation of
the original data, but requires high-resolution inputs.
The sinc function is a type of wavelet, and so it provides two essential features
for large-scale, general-purpose interpolation: segmentation and continuous repre-
sentation. These are discussed in Section 3.2.1.

23



Chapter 2: Related Work

Figure 2.2: An agent performing ten consecutive randomized queries

t=0 t=1

...

Figure 2.3: An agent may perform fewer queries per step over the course of many steps

2.4.2 Oversampling (Monte Carlo)

One approach used in image interpolation is oversampling, a Monte Carlo tech-
nique for computing a weighted average value for a cell whose boundaries do not
correspond cleanly to boundaries in the input data. Relating this type of process
to geostatistical and other data interpolation tasks is straightforward. Given an
input which has an unrelated space/time grid, an agent may take random sam-
ples within the range in which it is interested and average the values to determine
an appropriate aggregate value.
The oversampling technique addresses the problem of overlapping cells in the
following way. Every time an agent queries a data source with a different scale
(i.e. overlapping cells), it does so by selecting a random point within its range.
That random point is then projected onto the data source and the cell within
which it lies is the cell that is queried.
An example of a single value being generated by ten samples is shown in Figure
2.2. This will produce a weighted average of the underlying data which overlaps
the agent’s area. (Note that not all overlapping cells will necessarily be chosen
during any given number of random selections.)
In more complex cases, where an agent overlaps with many cells of underlying
data and must generate aggregate information, a less intensive version can be
used by averaging some number of random samples per time period (see Figure
2.3). In each time step the agent may choose fewer than one sample from each
underlying cell, but over time all cells will be represented proportionally to their
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overlap with the agent.

2.5 Signal Theory
Signal theory deals with discrete representation of continuous signals, and is in
general a study of two dimensions: one-dimensional discrete values being trans-
mitted across one-dimensional time through some communication channel with
known properties. It studies the accuracy and effectiveness of reducing continu-
ous, real-world phenomena to discrete representation. Higher-dimensional data
can be represented by reducing it to a series of one-dimensional discrete value
samples.
Signal theory can be employed in our work to reason about the accuracy and
effectiveness of our observation and scale mediation techniques, and about the
theoretical limits of the discrete representation of observable phenomena, and
the reliability of re-constituting or re-generating information from a discrete rep-
resentation.
The limitation of signal theory as it applies to us is that it is generally a study of
one-dimensional phenomena. Signal theory is at its core is data representation and
transmission. The data can represent arbitrary dimensions if the representational
format allows it; signal theory does not place a restriction on the dimensionality
of the data, per se but it does inherently enforce data to be represented as a
discrete-valued time series as an intermediate step. Still, it could be said that
we have the same limitation: computers represent all data in physical, binary,
memory- or disk-based formats, which are inherently one-dimensional, and so
our techniques are at some level strings of discrete values as well.

2.6 Collision Detection
There is a rich body of work on collision detection, with contributions from
both industry and academia, especially in the field of video game animation.
The field of collision detection is broad; even the problem is stated differently in
different contexts. For each form of the problem, many strategic approaches exist.
The broadest subcategories within collision detection are dynamic (generally a
priori) analysis by solving closed-form time functions for object motion, and static
(generally a posteriori) analysis of objects at pre-rendered locations [16].
Many approaches involve partitioning space by bounding boxes, cones, etc., and
identifying non-overlapping regions of objects for which collision computations
can be skipped [16, 27, 30]. This is the spatial equivalent to (temporal) Interval
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Analysis (IA), an optimization for event detection which has been leveraged by
FRP (Section 2.2). IA is used as an a priori technique, and so is equivalent to
dynamic collision detection approaches. Although we do not use IA directly, it
has informed our strategy for event semantics. Similarly, we would like to use
dynamic approaches to find the most efficient techniques for detecting collisions
in Thinklab.
In contrast, static techniques deal with spatial positions already generated during
some time step in a simulation or animation. These are the more common algo-
rithms in the field, and unfortunately do not apply very well to our formulation
of the problem. We do not anticipate their use being very effective in Thinklab,
but by our judgment there should be no barrier to implementing these types of
algorithms using our system.
We provide a good interface for incorporating collision detection algorithms, but
leave their implementation for future work (see Sections 4.4.4 and 6.1.1).

26



Chapter 3

Problem Statement

Thinklab is an ontology-based semantic meta-modeling and simulation platform.
A simulation in Thinklab is a series of observations by agents, which at a system
level can be seen as raw data exchanges. The subject of an observation is also an
agent; we call the states that are observed agent-states, which are composed of
property-value pairs over specific time periods. Agents experience observations
subjectively by perceiving the properties of other agents, and may respond to the
observations by making decisions and taking actions. The decisions made and
actions taken by an agent may result in agent-state transitions (changes in the
states of observable properties of the agent), or they may result in collisions with
other agents (a general term we use to refer to agent-state transitions forced upon
agents which are not a result of their own internal decisions). Because agents
and their decisions are observable by other agents, the process of a Thinklab
simulation can be expressed through a graph. Although we describe states and
state transitions, agents are more complex than state machines, so we will use
state machine terminology and concepts without pretense of rigor.
Observation is the main process we deal with in this thesis. An agent observes
another agent at a specific instant and makes decisions that affect its states over a
specific temporal duration; we also allow for continuous observation, probabilis-
tic reasoning, and continuous, time-varying states in a restricted interpretation.
These special cases fit within a semantic framework of instantaneous decisions
with specific temporal effect (see Section 3.1).
Before this work, non-synchronous scales had seen limited treatment in agent
systems, and were not incorporated into the reference implementation of this
work (Thinklab). What are now referred to as agents had been only capable of
observing and being observed in a fixed time instant. Some probabilistic repre-
sentation had been introduced in the form of Bayesian network data accessors,
but actual behaviors could not be carried out in a temporally dynamic simulated
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Figure 3.1: The three main problem categories within multi-scale simulation

world. The work presented here allows time to move forward, and for agents to
interact while maintaining subjective views of space and time.
Related work reviewed by the authors did not contribute meaningfully to the
design of a truly multi-scale simulation environment. Scales in other systems are
expected to be ultimately synchronous in all dimensions. According to Balbi [5],
most systems are either spatially non-specific (deferring spatial reasoning and
interaction to the implementation), or assume a single synchronous grid of space.
All reviewed systems had a single, fully synchronous time schedule with time
steps of equal duration.
The problem of multi-scale integration breaks down into three main categories
(see Figure 3.1): the Semantics of reasoning about scale, both in terms of the
software API and the agents’ reasoning abilities at runtime; the Scale Mediation
required when the agents in a system have different internal representations;
and the Subjective Perception that an agent may have, either by its relative po-
sition in space-time or by how the agent processes perceived states. Semantics
is covered in Section 3.1, scale mediation in Section 3.2, and Section 3.3 cov-
ers agent perception. Throughout the thesis, use-case scenarios will be used as
examples; these are introduced in Section 3.4. Finally, Section 3.5 discusses de-
liberate simplifications we have made to ensure usability in terms of complexity
and performance.
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3.1 Semantics

The problem of scale must be handled in a semantically consistent way if it is to
be incorporated into a useful modeling system. The semantics chosen must be
flexible and meaningful, but also intelligible and decidable.
The purpose of this work is to provide modelers with tools to build agents whose
perception, and as a consequence their reasoning and behavior, is influenced by
the different scales adopted by different interacting agents. Mechanisms should
be provided to implement behaviors as fluidly as possible, but differences in
scale and scale translations should be explicit and controllable. This requires
that appropriately expressive semantics be created for representing scales and the
operations that can be done on them, and also for the reasoning and behaviors
that result from observations made across differing scales.
We do not want differences in scale to be hidden from agents or the users who
create simulation models, nor do we want to require users or agents to reason
about scale unless it is important to their functioning. Scale should be an ex-
plicit, first-class concept which can be reasoned upon but also automated by
straightforward logic within the core Thinklab system. This logic must be intu-
itive to understand for users, because designing agents with the ability to reason
about scale implies that these agents are performing reasoning tasks equivalent
to the automated reasoning performed by Thinklab. Also, it should be possible
for agents to fully replace, or to perform only a subset of, what is normally au-
tomated by the system, which implies that these automated functions are both
modular and intelligible.
Within the field of agent modeling and simulation, there is a wide variety of
agent representation semantics. FLAME [23] uses XML files to define agents as
enhanced state machines; procedural reasoning is not present in FLAME agents,
and so the execution model is not rich enough for our purposes. SWARM [22, 36,
53] and Repast [42, 43] allow modelers to create code objects in Java and other
languages, so procedural reasoning is possible, but in both of these systems, the
world of interaction is a single, synchronous entity in the simulation, meaning
that the issue of heterogeneous scales is not addressed within these systems (or,
more precisely, it is the problem of the modeler to deal with it before introducing
external data).
Some projects using these systems have concepts of heterogeneous scale as a
lightweight layer of translation on top of a synchronous lattice representation of
space/time. Balbi [5] reviews many systems built for socio-ecosystem research,
specifically identifying how space and time were treated in each system. About
half were aspatial; the spatially explicit systems used combinations of cellular
and GIS-based representation. Temporal scales were all synchronous, with sim-
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ulation time “steps” representing some number of years. One slight exception to
this was Berman’s study [7], in which year-long time steps were broken down
into fourths or fifths for certain event types. This small departure from syn-
chronous time and space does not fulfill our goal of truly heterogeneous scale
representation, so we had no previous analysis of the problem to follow.

3.1.1 Cyclical Dependency vs. Circular Reference

In this thesis, we draw a distinction between cyclical dependency and circular ref-
erence. Cyclical dependency is a natural process by which two agents influence
each other over time; a circular reference is an un-resolvable dependency in a
single instant of time in which two or more elements depend on each other in a
way that none can be computed. A circular reference can be an artifact of a lim-
ited view of time and a product of flawed model design: most circular references
in models disappear if the notion of time implemented is made flexible enough to
solve the problem of simultaneous write access to co-dependent states. As an ex-
ample, consider the implications of the speed of light and event horizons: beings
cannot influence each other immediately, and the synchronization of informa-
tion transfer in cause/effect relationships can only be slower than the speed of
light; therefore, simultaneous effective co-dependency is impossible.
A system which models real-world interactions must allow the unlimited defi-
nition of cyclical dependencies, because such interactions are common in real
life. For usability, accuracy, and the convenience of finding errors quickly, the
system should also be able to detect and handle circular references showing up
as artifacts. The system should fulfill these requirements explicitly, problem sce-
narios should be unambiguously classifiable as either cyclical or circular, and
the cyclical problems should all be computable in a straightforward way.

3.2 Mediation Between Scales
Agents in a modeling system may have internal representations that are required
for their correct functioning. In some cases, agents’ internal representations will
be matrices of discrete values, and in other cases they will use continuous values
(e.g. vectors) to represent their state. Agents may also represent values as qual-
itative classifications or semi-quantitative ranks. In other cases, an agent may
simply apply a modification to underlying data, and can inherit and re-present
arbitrary representation schemes.
Simulations using heterogeneous scales will be forced to translate observable
phenomena from one scale to another using scale mediation mechanisms. As
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mentioned in 2.3, the scale mediation problem can be stated as: given the N

values of a studied phenomenon zj, j = 1, . . . ,N measured at discrete points
rj = (x

[1]
j , x

[2]
j , . . . , x

[d]
j ), j = 1, . . . ,N

within a certain region of d-dimensional space, find a d-dimensional variate func-
tion F(r)which passes through the given points; that is, that fulfills the condition:

F(rj) = zj, j = 1, . . . ,N

In this section we describe the various elements of the scale mediation problem.

3.2.1 Quality and Performance

The effectiveness of a scale mediation solution depends primarily on two features:
segmentation and continuous representation.
Segmentation is the ability to split a data transformation problem into segments,
and is essential to processing large data sets, as it allows parallelization of the
computation. Data represented using values with only localized context can be
segmented. For instance, the coefficients of a cubic spline model representing
some z value within a (x,y) surface only affect a small number of neighboring
values. Contrast this with polynomial vectorization, which takes all data points
into account and generates a high-dimensional formula whose coefficients fit the
resulting curve to all points along each dimension. A change in any one of the
coefficients of a polynomial vector will affect the value of all points, whereas a
change in one coefficient in a cubic spline model will affect only a few points
immediately around the center of the change.
Continuous representation uses continuous, real-valued curves to represent the
data set, rather than measurements located at discrete locations and having pos-
sibly limited-accuracy values, as in a bitmap image with finite color depth. Con-
tinuous representation allows data to be represented concisely and accurately,
and also allows data expressed in one scale to be re-sampled into multiple ar-
bitrary scales without repeating the full scale mediation process. This can be
accomplished by saving the continuous-valued representation of the data after a
conversion is done, and re-using this representation as the basis for generating
discrete data in another scale.

3.2.2 Interpolating Between Sampled Points

Geostatistical data sets are commonly assembled from some number of discrete
measurements. Various data collection techniques may be used, depending on
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the phenomena, location, instruments used, etc. Each of these instruments or
collection techniques introduces a degree of granularity into the data set; the
resolution generated by a soil survey may be a grid of categorical soil quality val-
ues with a two-meter distance between each sample point, whereas non-remotely
sensed sample data such as biodiversity profiles might be taken only where hu-
manly possible, which may be very limited, such as on exposed cliff edges or
swampy jungle terrain.
Innumerable other possibilities may preclude samples being taken at regular
intervals, such as time or financial constraints, political or legal hurdles, bad
weather or visibility, etc. In this way, geostatistics shares our need to accommo-
date source data which is either incomplete or in multiple incompatible scales,
including scales which differ in their fundamental treatment of the measured
phenomenon.
All the limitations of real-world sampling (irregularity, inaccuracy, discrete or
blunt values) have equivalents in a computing environment. Values in a com-
puter are necessarily finite, although they can be expressed with very fine res-
olution; inaccuracies are always present in parameterized computations when
parameters are measured or assumed; and irregularities occur when accommo-
dating heterogeneous scales in the form of aliasing. Aliasing refers to the pat-
terns which are created when two differing sampling schemes are overlaid on
each other. It can commonly be seen in small fonts which become pixelated or
in digital images of subjects with regular patterns in them (such as a photo of a
mesh screen taken with a digital camera). These patterns can manifest as jagged
edges, spots, or warping.
Therefore we would like to draw inspiration frommultivariate interpolation tech-
niques in other areas and apply them to the simulation environment. This will
allow us to leverage thinking which has already been invested by experts, and
it will also provide domain-specific solutions which more closely fit the needs of
the data in question.

3.3 Subjective Agent Perception

Agents have subjective views of space and time. Real-world agents’ experiences
can include distortions due to physics, error-prone sensors, limited experiential
capacities, distance, interference, or other factors. Agents in the target imple-
mentation aim to reflect real-world semantics, so accuracy in the representation
of perceptual scale distortion is a goal. Agents may sense distance or take other
measurements accurately at close proximity, but less accurately at longer range;
they may wake up and become dormant at certain intervals, which causes their
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awareness of time to vary; or they may be subject to physical effects, such as
heat or magnetism, which affect the physical properties of their inputs.
These are all examples of ways that the same world can be perceived differently
by agents with different sensors, internal structures, or positions in space. These
effects of subjective perception can be broken down into three categories: per-
spective, accuracy, and distortion. These do not need to be treated explicitly as
separate concepts by a simulation system, provided they can all be included in
simulated agents.

3.3.1 Perspective

Perspective is a subjective distortion due to the laws of physics. This could in-
clude parallax distortion, vanishing points on the horizon, objects hidden behind
other objects, or other natural distortions that happen because of physics. The
reason why we differentiate this from other subjective effects is that it happens
outside of the agent, in other words, it is just a characteristic of the way that
phenomena arrive at an agent (the way light approaches the lens of an eye or a
camera), and it is not because the agent is incapable of interpreting the inputs
accurately.
We would like to include these filters internally in the agents, even though the
physical effects happen outside the agent, because we would like to reserve the
possibility of creating agents for which these distortions are not present. An
agent might be composed of a distributed sensor network which is not subject to
interpreting input at one physical location, for instance a satellite system with a
processing center in one city. This type of agent has a physical center of computa-
tion and is therefore considered to be located there, but its inputs are distributed
over its environment.

3.3.2 Accuracy

Agents’ inputs can vary in accuracy based on the qualities (or quantity) of their
sensors. A real-world example is the various ranges of light which are visible
by different animal species. Humans see what we call the visible spectrum, but
other animals may see frequencies below or above our range. Combinations of
frequencies can be identified with more or less accuracy based on the number
and type of cones present in the animal’s retina. Similarly, the senses of smell
can differ between species, and the sense of touch can vary widely even between
locations on the same animal body.
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3.3.3 Distortion

Distortion effects are those in which an agent experiences one class of phenomena
andmakes assumptions or develops meaning in another related class, for instance
judging spatial scale based on the amount of time that has passed or the visual
or emotional cues that have been triggered.
The same external phenomena can be experienced by an agent differently at
different times based on the agent’s state. An animal that is sleeping, for instance,
may experience the time asleep as passing very quickly; many hours of sleep
might be perceived to be the same as only a few seconds of waking life.

3.4 Use Case Scenarios

To make discussions more concrete, and to make the concepts more accessible,
we have created use case scenarios which illustrate the functioning of the Think-
lab system and the requirements we would like it to fulfill.
The scenarios involvemultiple agents interacting with each other in real time. All
agents have inputs which correspond to observations of other agents’ behaviors,
and therefore they have a strict dependency on the forward movement of time.
Cyclical dependencies are immediately noticeable in both of the diagrams. These
types of influences must be accounted for in a general modeling system because
they exist in the real world. However, true circular references do not exist. As
introduced above, circular references in modeling/simulation system are usually
the products of flawed design; our treatment of this issue is covered in detail in
Section 4.4.3.
Events that may take place in these scenarios are changes in government policy,
socio-economic activity (working, farming, moving to another village), agents
coming into existence or being destroyed (family units either coming of age or
dying), or natural phenomena (rainfall and flood patterns). Events may take
place as a result of procedural decision making, as would be the case with an
autonomous deliberative agent, or as a result of thresholds or other requirements
being met, such as a family being forced to move when there is no food available.
Observations may be directly made of other agents, or they may be aggregated
observations over collections of other agents. These events and observations
should be straightforward to model and should be clear to users who observe the
simulations being executed.
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Figure 3.2: Agent interactions in the Soil Erosion scenario

3.4.1 Scenario 1: Soil Erosion

Some of the primary drivers of soil erosion risk in a particular area of land are
rainfall, slope of the ground, vegetation root strength, and human activities such
as farming, foot or car traffic, and clear-cutting the land (see Figure 3.2). We can
develop estimations of potential soil erosion areas and model people’s behavior
in response to soil erosion, as well as people’s contribution to soil erosion.
Also, governments may intervene by providing subsidies or penalties to modify
people’s behavior. In this example, we assume there is a government program
which, when the soil in an area is at risk of erosion, pays farmers 50% of the
potential crop value if they decide not to farm.

3.4.2 Scenario 2: Food Security

This scenario is more complex (see Figure 3.3). Administration of economic and
food policy is handled at both the regional and village level for a certain commu-
nity. Family units may make decisions such as whether to farm, work in other
employment, collect food aid, or to move to another village depending on vari-
ous criteria, and one result of decisions in the context of available resources is a
given family’s level of food security. The criteria which affect families’ behaviors
may be availability of water, arable land, food for purchasing, economic policy,
risk of flood, and risk of events such as social or political upheaval. Also, families’
behaviors influence the availability of food and employment in a given village.
These three agent types – family units, leaders, and environmental systems – all
respond to each other in patterns currently being explored by field researchers
related to the Thinklab project. The researchers develop Bayesian networks for
decision making based on their findings, and the natural phenomena (rainfall,
flood danger) is modeled in the system through field studies and from published
geophysical data.
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Figure 3.3: Agent interactions in the Food Security scenario

Willingness to Farm

Rainfall

Availability of Work

Flood Danger

Availability of Work

Flood Danger

Willingness to Move

Figure 3.4: Willingness to Farm and Willingness to Move can be seen as independent
Bayesian networks
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“Willingness to Farm” and “Willingness to Move” are concepts that may be re-
solved in Thinklab to models that use Bayesian networks. Each represents an
abstract decision factor on which a family unit will rely to make decisions about
whether to change their location or farming activity (Figure 3.4). We would
like to allow Bayesian networks to be used as the strategy to compute concepts
representing inputs for agents.
In this scenario, decisions are made by families and by the village chief depend-
ing on collective economic activity, and the collective actions of village chiefs
influences regional government decisions. This implies that aggregate functions
must be present in the simulation system.

3.5 Deliberate Simplifications
As we developed Thinklab, we could only spend a finite amount of time in design
and development. Also, it is bad practice to over-develop a system in the attempt
to obtain indiscriminate flexibility for every use case. The simplifications in this
section constitute the boundaries of our work, but it should be possible to expand
into any one of them as the need arises. We leave these expansions as Future
Work (see Section 6.1).

3.5.1 Handling of Relativistic Space/Time

An observer’s experience of the physical universe will depend on the observer’s
position in space and time. According to Einstein’s theories, time, space, and
gravity are co-dependent, and are experienced subjectively by observers. Spe-
cial relativity states that observed events cannot be ordered in any absolute way;
events which appear ordered a certain way from one point of view may be or-
dered differently when seen from another point of view.
A truly general modeling framework would allow for observations which include
time delay and spatial warping based on an agent’s position and velocity. It
would also include the limitations of the speed of light itself (e.g. event horizons).
Our system has not been used for a simulation task requiring these, so instead of
trying to adopt a space/time view compatible with relativistic representations,
we impose a synchronous integration of time and space, allowing the agents to
internally diverge from or re-interpret this global synchronization as they wish.
A simulation is driven by an agent we call the root subject, which implicitly has its
own subjective view of space and time. The global synchronization mechanisms
we use could be said to represent the dimensions seen by this agent. However,
this ordering is also enforced upon the various agents within the simulation as
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they interact with each other. In other words, each agent within the simulation
is forced to inherit the total ordering of events as experienced by the root subject,
even if they are not aware of its existence. This assumption should not cause any
limitation representing events and phenomena whose scales are compatible with
human history and experiences.

3.5.2 Arrow of Time

A large catalog of work exists on the “arrow of time” in terms of thermodynamic
and cosmological laws [49]. Physicists do not agree on the nature of the forward
progress of time; it is at best negotiable what implications exist about causality,
reversibility, the direction of increasing entropy, expansion or contraction of the
universe, etc. We leave our mention of it at this rudimentary level, because to
include this type of question in our research or to leave open the configuration
andmodeling possibilities would require an untenable amount of time and would
probably not result in a working system at this stage.

3.5.3 Arbitrary Dimensions

In a general modeling system, the number of dimensions seen by an agent must
be flexible. Typical agents may measure a data point as a function of time (e.g.
a thermometer), as a function of two-dimensional space (e.g. a topological el-
evation map) or three-dimensional space (e.g. an air quality model), or four-
dimensional space and time, (i.e. a three-dimensional model which changes over
time).
Other dimensions could include the string- and superstring-theoretic addition of
eleven to over twenty dimensions, including small dimensions in some cases [48],
or could include concepts of parallel planes of existence or modes of agency, such
as a single agent acting under many different prototypical roles simultaneously,
and having various perceptions and abilities but a single cohesive awareness of
the world.
Throughout this thesis, time and space will be considered four-dimensional, and
agents may be aware of any number of these dimensions. Arbitrary numbers
of dimensions outside these views of space-time are beyond the scope of this
work, but the design proposed is compatible with arbitrary dimensions. We also
include this in Future Work (Section 6.1).
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Design

In this chapter, we describe how we have incorporated ideas from other research
areas into our system design. These ideas and the designs they informed collec-
tively allow multi-agent, multi-scale simulations to take place in Thinklab.
Figure 4.1 shows a general overview of the work done for this project. Scale me-
diation is composed of a few steps, each of which has specific design elements.
An agent observes its subject by requesting specific properties from a scale me-
diator which is dedicated to observing one subject agent over its lifetime. Each
such request is made for a specific observation time and for a specific observable
property, and the result is filtered through the agent’s perception filters. The scale
mediator may return a result by a number of different routes. It may contain a
cached result in the desired scale which can be returned immediately, or it may
also contain an intermediate vector representation of the subject agent during
the observation time which can be quickly generated into the desired scale. If
neither of these are present, it will have a reference to the subject’s agent-states
over time from which it can generate the two representations mentioned above.
All subjects’ agent-states are kept in a single authoritative observation controller
during a simulation. Agents proceed through time by generating new agent-
states and reporting them to the observation controller, which in turn updates
all affected scale mediators through a standard publish/subscribe mechanism.
Incorporating multiple scales into Thinklab is not as simple as introducing a
single data conversion technique. The multiple scale problem creates a different
set of challenges for different types of agents, different types of observations,
and different system functions (observation, collision detection, messaging); all
of these areas must be compatible with a unitary semantics for scale and scale
mediation.
Time is a dimension with peculiar characteristics. Entire fields of physics are
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Figure 4.1: Overview of observation components in Thinklab.
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Figure 4.2: The observation and agent-state cycle in Thinklab

devoted to its inconsistency and directionality, and to addressing limitations it
places onto phenomena and events (causality, speed of light, event horizons, etc).
In our domain, time is irreversible; it cannot be reasoned with other than in the
forward causal direction. As a simulation platform, Thinklab must handle taking
steps that generate unpredictable results and emergent behavior that cannot be
predicted in advance. This corresponds to the main goal of simulation in the
first place: to show results of what cannot be proved or modeled mathematically.
Therefore, the forward direction of time is an essential feature which is unique
to time and does not exist in other dimensions such as space. Also, there are
abstract and theoretical dimensions which we did not implement but we must
allow for (see Section 3.5.3). These include the theoretical dimensions of string
theory, the abstract dimensions of viewpoints and interpretation, etc.
The rest of this chapter is organized as follows: Section 4.1 discusses the seman-
tic model we created to consistently and explicitly handle multiple scales and
to allow agents to reason about scale and scale mediation; Section 4.2 covers
how scale mediation strategies were incorporated into the system; Section 4.3
describes how agents’ perception can differ subjectively, allowing agents with dif-
ferent characteristics to interpret the same environment differently; and finally,
Section 4.4 explains the execution model which converts the semantic specifica-
tions into concrete computational steps during a simulation.

4.1 Semantics

Here we give the semantic model for observations in Thinklab. Some of the
design here was already in place prior to the start of this project, but adaptations
had to be made to accommodate the forward progression of time and agents’
ability to reason about scale and scale translation.
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Figure 4.3: Agent Type Hierarchy for Thinklab

Because Thinklab is a simulation system based on agent observations, its exe-
cution flow is primarily centered around the cycle of agents’ observations and
subsequent state changes (see Figure 4.2).

4.1.1 Agent Types

This section is a summary of the Agent object in Thinklab, which is implemented
as a hierarchy of Java classes and corresponds to the basic categories of agent
types in literature (see Figure 4.3).
Agent types are described in Section 2.1.3, and the Java classes we implemented
are described in Section 5.1.1.
In Thinklab, agents fall roughly into four categories that differ according to per-
ceptual and reasoning abilities. They might (i) have no reasoning ability at all
(information carriers), (ii) apply layered rules (reactive agents), (iii) have inter-
nal state and logic (deliberative agents), or (iv) have more complicated interac-
tion/organization (social/organized agents).
Athanasiadis’ information carrier agents [4] correspond to the messaging system
planned for Thinklab and to models generated by field-collected data, neither
of which can perform reasoning of their own. These types of agents act only as
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subjects (rather than observers) during a simulation.
Implementing specific classes of agents is done by extending one of these classes,
or an instance of a class can be created as is. Agents in Thinklab are created by
issuing an observe statement in the ThinkQL language that specifies the concept
they should incarnate and any pre-defined initial state (such as their initial scales
and locations in time and space). Models (defined with a model statement) can be
defined independently and are paired to agents intelligently to provide themwith
behavior that reflects context and external conditions, and can change during the
course of the simulation.

4.1.2 Agent Interaction

For communication, agent systems typically employ either a directory service to
allow agents to find each other, or a blackboard system to allow agents to send
messages in a more anonymous fashion. In Thinklab, the discovery system is
merged in the abstraction of the resolver, a component that dynamically resolves
dependencies stated in terms of ontological concepts to specific models (agent
behaviors and state computation algorithms) which are applied to observe infor-
mation for the requested concepts. The resolver will also provide agents with
appropriate scale translation mechanisms, because it is the software component
that will be aware of the native scales of the subject and observer agents.
Although many explicit agent interaction types exist in literature (see Section
2.1.4), we have not specifically designed any interaction protocols. We provide
an API by which modelers can create interaction mechanisms, accessible both
through Java and through the Thinklab modeling language, and we also pro-
vide a messaging system which fits into the ontological semantics of Thinklab.
The messaging system treats messages as lightweight agents, because they fit our
agent definition quite well: they are produced by other agents (a characteristic
of agents which come into existence during a simulation), their properties are
expressed in a native scale, they are temporally bound and possibly temporally
dynamic (if they expire or degrade, for instance), and they can be observed sub-
jectively by other agents by invoking the scale mediation mechanism in Thinklab.

4.1.3 Temporal Scale

Scale is an arbitrary-dimensional concept. Depending on the interpretation and
the purposes, time, space, and other dimensions may or may not be treated dif-
ferently. We made the decision that time is a unique dimension with different
characteristics than spatial or abstract dimensions. Two characteristics are es-
sential to time as we have incorporated it: 1) causality is one-directional; and
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2) time is a single continuous dimension which can be evaluated in isolation
from other dimensions. Neither of these two are essentially true at the core of
physics, but for the purposes of a machine-based agent simulation, and accord-
ing to the simplifications we have chosen for our model of physical reality (see
Section 3.5), they hold consistently and have been essential for allowing us to
implement Thinklab in a straightforward way.
Thinklab allows both irregular and subjective scales in all dimensions includ-
ing time. Our temporal semantics align with Functional Reactive Programming
(FRP) (see Section 4.4.5); specifically, we tried to adopt a model compatible with
push-pull dynamics by distinguishing between the discrete and continuous com-
ponents of real-world phenomena, and by distinguishing between times when
meaningful events happen and times in which they do not.
Agents are only able to make decisions at specific points in time which we call
observation times. These points are the equivalent of FRP’s discrete event compo-
nents of behaviors, and are the times when agents’ decisions cause meaningful
changes to agent-states. In agent perception, observation times do not represent
discrete points in time: simply, time does not exist between them, as the percep-
tion of time make the time domain a continuous one in each agent. Therefore,
between observation times, agents’ observable state functions do not change, but
the functions can be evaluated continuously along the intervals between points.
These functions are the equivalent of the continuous components of behaviors in
FRP, and represent periods of time when no meaningful changes are happening
beyond what is expressed by the state functions.
This structure leads to an overall dynamic where each agent is allowed to proceed
along a totally subjective temporal scale, making decisions at intervals appropri-
ate for the agent, and changing state over time in both discrete increments and
continuous intervals. These subjective time scales are synchronized by using
globally-synchronous values for time to enable agent observation as described
below.

4.1.4 Temporal Synchronization

We have decided to use a globally-synchronous timer to allow Thinklab to co-
ordinate agents which may be unaware of each other’s temporal scales. Each
observation is made by an agent at a specific time, which is subjective to the
agent and does not correspond to any other agent’s time scale. This observation
time is converted into a globally synchronous time value by Thinklab so that
consistency between agents can be enforced (Figure 4.4). As agents make deci-
sions and take action, the state changes that occur as a result of those actions are
recorded with globally-synchronous time values.
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Figure 4.4: Agent observations using globally synchronous, locally subjective time scales

An agent may or may not know its position in space and time. The modeling of
this is left to the mechanisms internal to each agent: all observable properties in
the simulation are available at all times to all agents, but the implementation of
the agent decides what is perceived of these properties (see Section 4.3). However,
one restriction is enforced: only properties that have become valid before an
observation time are observable during the observation (see Section 4.1.6).
Agents’ schedules of temporal awareness are allowed to proceed by whatever
time steps are deemed appropriate, fully disconnected from the globally syn-
chronous simulation clock. Thinklab contains a mechanism as part of the agent
API which transparently makes these conversions on the behalf of the agent, so
that agents are not aware (through this mechanism) of the global time but live
fully within their subjective experience of time.

4.1.5 Observation Times

An observation is made of a subject agent by an observing agent at a specific in-
stantaneous observation time. All agents operate according to discrete, subjective
time scales made up of contiguous intervals of arbitrary and possibly heteroge-
neous duration. Agents perceive their scales to be a continuous series of obser-
vation times, between which time does not exist, but in the system a time scale
is represented as a series of intervals bounded by these discrete instants. Agents
may make observations during each observation time that their scale puts into
existence between the intervals. An observing agent can make any number of
observations (including zero) of other agents during an observation.
After all observations implied by the model are made by the observing agent, the
latter, when its semantics allows, has the ability to make a decision and act upon
the world. As required by the use case scenarios in Section 3.4, decisions can be
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Figure 4.5: Exclusive-start, inclusive-end semantics for time periods

made in reference to simple observations (e.g. move away if color == blue),
thresholds (move away if income < 1000), or aggregate functions (move away
if sum(population) > 100000). Actions may change the states and scales of
other agents besides the observing agent through what we have termed collisions,
as a reference to the field of collision detection. For instance, a rock might hit and
wake up a hibernating bear, who otherwise would have not experienced the next
four weeks of time at all. State changes can only disrupt the states or scales of
any other agents through collisions; by default, they only modify the observable
properties of the agent making the state change.

4.1.6 Exclusive-Inclusive Time Periods

From the point of view of the system, agents operate by making observations
and decisions at specific observation times according to their subjective temporal
scale. Any observations made at an observation time will be based on agent-
states which are valid up to and including the observation time, and the observable
result(s) of any decisions made become active immediately after as they are made.
Using normal interval notation, we would write these exclusive-inclusive periods
of time as (tx, tx+1].
This assumption reverses common practice for interval semantics, and for a good
reason. It most closely resembles the real world, in which the effect of an action
becomes “real” the (perceivable) moment after the action takes place. A direct
effect of this interpretation is the avoidance of circular references, again expos-
ing their fictitious nature due to the oversimplification of event occurrence in
simulated systems.
The end time of the period of validity is not required; state(s) can remain valid
indefinitely by setting an INFINITE end time. This kind of time representation is
useful in simulating, for example, systems driven by real-time data acquisition,
or an agent’s expiration which will never be re-evaluated.
In our diagrams, we show each observation time as a circle with open and closed
halves to illustrate the exclusive start (open half) of the state coming into exis-
tence and the inclusive end (closed half) of the state which is expiring (see Figure
4.5).
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1. Get state distribution function for t 2. Agent state = fx(t)
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Figure 4.6: Evaluation of a subject’s state may use deterministic or probability-
distribution functions, rather than constant values

4.1.7 Agent-States

As agents proceed through time, their observable states change at specific points
in time (observation times) and remain effective during the time periods bounded
by the observation times. We refer to each time period as an agent-state time
period, or simply agent-state for brevity.
An observing agent observes a subject agent by first identifying the state distribution
function for the subject’s desired observable property that is valid at the observa-
tion time, and then solving the function for the observation time t (Figure 4.6).
The state distribution function expresses the value of an observable property of
the subject agent in its native scale. After the state distribution function is evalu-
ated, the result is converted into the observing agent’s preferred scale and made
subjective by applying the observing agent’s distortion filters.
By mathematical definition, an agent A makes observations at times tx ∈ TA,
each of which produces an agent-state function fx in its agent-state series FA.
Agent-state functions express a probability distribution of values for each ob-
servable property of the agent; they are functions of both Time and Property:

TA = {t1, t2, . . . , tn}

FA = {f1, f2, . . . , fn}

fx : (Time,Property)→ State

state(t,p) = fx(t,p) for max(x) : tx < t

Strictly speaking, TA ∈ R, but software implementations of time will generally
introduce some level of discretization.
A state distribution function can be any distribution over a set of state functions of
the independent time and space dimensions. The range of a state function is the
domain of the property being observed. A state distribution function is capable
of expressing a single constant value, a single path function (e.g. a ball moving
through the air), a probabilistic distribution over constants, or a distribution over
functions. Throughout this thesis, we refer to “observing an agent’s state”; it is
implied that the state distribution function is being observed.
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This design fits with the concepts of endurants and qualities of formal ontologies.
Endurants hold identity throughout the life span of an entity, independent of
changes in state. Qualities are not entities of their own, but they describe en-
tities and can be bounded in time. In Thinklab, agents are endurant entities
and their agent-states are qualities that change over time. Agent-states are com-
posed of any number of properties, which are attached to ontological concepts
just like agents themselves are. It is possible that agents express different prop-
erties during different time periods; even if an agent expresses no properties for
a time period, Thinklab will store an empty property-value mapping for that
agent-state.

4.2 Mediation Between Scales

In this section we describe the design of the scale mediation system, which allows
agents in Thinklab to observe one another despite their differing views of space
and time.
The scale mediation system includes a strategy for selecting scale mediators, and
the scale mediators are components which are inserted between an observer and
a subject at the time the observer’s dependencies are resolved. The scale media-
tor is composed of interpolation, intermediate representation, and output caches
at potentially many scales. We have attempted to make the scale mediation sys-
tem as modular as possible to facilitate module reuse, and we have also tried
to make the scale mediation process as modular as possible to facilitate reuse of
interpolated results.

4.2.1 Optimal Agent Scale

If a given agent operates at a given scale, then that agent will optimally make
observations of dependencies which are at the same scale. The existing resolution
mechanism in Thinklab does not take scale into account, although that is an
intended upgrade being implemented outside the scope of this work. Currently,
the resolution mechanism finds observable models that are capable of fulfilling
requirements stated ontologically, and selects the model with the best coverage
given the context of observation. The resolution mechanism in Thinklab will be
able to prioritize models that are best suited to delivering the most appropriate
scale and granularity, those with more efficient conversion computations over
less efficient ones, and also it will be able to filter its selections based on both
objective information and user-provided quality assessments. (See Section 4.2.3
for more information on mediator selection.)
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This will allow the system to minimize computation associated with scale transla-
tions by using agents that share a common scale whenever possible, and using the
best available mediation strategies when agent scales differ. Of course, this pri-
oritization must be parameterized so that circumstances can dictate preference
for speed, accuracy, coverage, availability of efficient mediators for the given
domain, etc.

4.2.2 Intermediate Vector Representation

Many scale mediation algorithms inherently have an intermediate step that can
be represented in vectorial form. For instance, linear interpolation is a tech-
nique that draws a straight line between each pair of neighboring points (in two
dimensions; the equivalent three-dimensional technique is called triangulation,
and connects neighboring coordinates by means of triangular surfaces). This
type of scale mediation generates discretized points by first generating the linear
functions, and then solving those functions at each discrete point.
Linear interpolation uses purely straight lines, but other types of vectors can
be used as well. Some strategies generate spline functions, which are general-
purpose, configurable curve definitions commonly used in vector graphics. Other
strategies use domain-specific vector representations which can be mathemat-
ically more complicated but still provide desirable functionality for the scale
mediator design we have chosen.
Mediation algorithms which inherently use some continuous intermediate rep-
resentation have the advantage that these representations can be cached inside
the mediator object and re-used for generating new observations of the same un-
derlying phenomenon at different scales. Some algorithms produce interpolated
data points without ever generating an intermediate representation; for instance,
IDW (Inverse Distance Weighted) interpolation is a technique for “querying” a
certain point for its observation value. As mentioned in Section 2.3.1, IDW gen-
erates data points f(x,y) based on some number of input values v(xi,yi) in the
neighborhood of (x,y):

f(x,y) ≈
∑

iwiv(xi,yi)∑
iwi

where wi ∝ (distancei)
p

≈
∑

i

(√
(x− xi)2 + (y− yi)2

)p
v(xi,yi)∑

i

(√
(x− xi)2 + (y− yi)2

)p
All parts of the formula depend on the value chosen for (x,y), including which
values v(xi,yi) are chosen to represent the neighborhood of (x,y). To generate
a concise representation, the boundaries where the neighborhood composition
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changes would have to be generated; this is at best non-trivial, and still the
developer is faced with representational problems. Simply, when using IDW
there is no concise intermediate expression of the set of all generated values, as
there is in other techniques.

4.2.3 Scale Mediator Selection Strategy

Scale mediators can be categorized by many different features: those which have
a continuous intermediate representation vs. those that do not; differentiable vs.
non-differentiable; number of dimensions which can be handled by the scale
mediator, O(n) performance, etc. These can be required by the relationships
between ontological concepts or by a user running or testing the system.
Requirements are attributed by using reasoning on the ontological concepts be-
cause it is the concepts that determine the mathematical characteristics of the
feature beingmodeled. Requirements can be stated for specificmediators, classes
of mediators, or arbitrary features for which mediators can be tagged.
A scale mediation strategy is selected for each relationship between two agents
based on a layered preference model:

System Default Global default system-wide preferred scale mediator. This will
most likely be the “nearest neighbor” algorithm because of its simplicity
and performance.

Ontology-Relation-Specific Default Thinklab can be configured with specific
mediation requirements for each ontological dependency relationship. This
will be specified at the “relationship” level to accommodate domain-
specific criteria. For instance, computing slope based on an elevation map
may require that the mediated data set is differentiable; i.e. that dy/dx is
continuously computable.

Runtime Parameters Thinklab could accept parameters on the command line
to use specific scale mediators as overrides for the above selections. For
instance, a simulation parameter could dictate that mediator x is the new
system default, or that x is always used for translating from model M to N,
or that mediator x is used in place of mediator y whenever it is requested.

Available scale mediators are filtered in the order Runtime → System Default.
If at any stage in the selection process the list of qualifying mediators is empty,
then Thinklab will select themost appropriatemediator from the previous list. We
have not yet determined a good algorithm for determining the most appropriate
mediator; one idea would be to throw out the selection criteria that made the list
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empty and continue without it. The algorithm should also require that the scale
mediator is compatible with the number of dimensions and with the subject and
observer scales.

4.3 Subjective Agent Perception
Real-world agents and their simulated counterparts will generally have finite and
possibly inaccurate sensory input, and possibly systematic bias such as humans’
inability to place certain sound frequencies in three-dimensional space. To allow
different agent types to process observations differently, we chose to incorporate
into the agent semantics a distortion mechanism, which is a collection of filters
that can be applied to incoming information so as to distort, enhance, degrade,
skew, stretch, or otherwise change it as it is processed by the agent.
Essentially, we have separated the act of observation into the external process
of information gathering and the internal process of perception. In Thinklab, the
external information gathering is performed by observing other agents’ proper-
ties and converting them to the observer’s scale by scale mediation; perception is
internal to the agent. By doing so, we have emulated nature by differentiating
between the outward natural phenomena and the inward interpretation of and
response to the phenomena by interactive beings.
The perception filters can be as simple or complex as desired. For instance, it is
possible to create an “ultimate” agent in Thinklab which observes every agent’s
properties in the simulation, over all time and space at the finest level of detail in
the system. The only constraint is that observations occur at a specific instant in
time and are not allowed to observe the future. This is not a semantic restriction
to limit the power of ultimate agents, but rather a necessity of our implementa-
tion. Collision detection and dependency resolution would be impossible if we
allowed future observations, and future observations are of no practical use in
Thinklab anyway.
As an agent makes an observation, the necessary properties are collected from
the appropriate subject and delivered to any filters which may be present for
that agent. After the filters have been applied, the agent receives the observed
property in its modified state and may then perform its reasoning.

4.4 Execution Model
The execution model of a Thinklab simulation is summarized in Algorithms 1
and 2. A Thinklab simulation begins with agent initialization. Agents are created
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(explicitly for the root agent, usually based on observed evidence from datasets
for subordinate agents) and initialized with states that are valid during the instant
of time that starts the simulation. States expire at varying times as appropriate for
each agent’s temporal scale. After all agents have been initialized, observation
tasks corresponding to the expiration time of each agent-state are placed in an
observation queue. Each agent-state expiration time is an observation time when
the agent will make new observations and generate new agent-state distribution
functions for the following time interval (see Section 4.1.5).

Data: rootAgent with initial state; empty temporalGraph,queue, and
processing objects

Result: fully computed simulation
begin

InitializeAgent(rootAgent,queue, temporalGraph)
while |queue| > 0 do

task← pop the next task from queue

add task to processing

result← execute task

remove task from processing

agentState← agent-state from result

add agentState to temporalGraph

relationships← causal/influential dependencies from result

for relationship ∈ relationships do
add relationship to temporalGraph according to type

end
subsequentTasks← additional tasks which result from task

for subsequentTask ∈ subsequentTasks do
add subsequentTask to queue

end
end

end
Algorithm 1: RunSimulation

Once the observation tasks are created and placed on the observation queue,
the system starts a loop of computing agent observations and adding subsequent
observation tasks to the queue. When all observations have completed and the
observation queue is empty, the simulation is finished. Agents may follow a reg-
ular or irregular time scale; Thinklab is completely indifferent and is not actually
aware of agents’ time scales. Agents manage their time scales internally, and it
is up to each agent whether it generates an entire schedule when it is initial-
ized, or generates each successive observation time as it proceeds. Even if the
scale is generated upon initialization and is completely deterministic (such as a
soil quality agent with a daily or seasonal re-evaluation cycle), it reports each
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Data: agent with initial state; queue and temporalGraph objects
Result: fully initialized queue and temporalGraph

begin
agentState← initial agent-state from agent

add agentState to temporalGraph

task← new observation task for agentState expiration time
add task to queue

subjects← observable subjects of agent
for subject ∈ subjects do

InitializeAgent(subject,queue, temporalGraph)
end

end
Algorithm 2: InitializeAgent

observation time to Thinklab in real time during the preceding observation.
Agent-states are not required to change at each observation time, but agents
must explicitly re-declare their states and state expiration times, or Thinklab
will consider the agent to be dead (see Section 4.4.1). Any agent-state which
is requested by an observer agent but has not yet been computed will cause
the observer agent thread to go to sleep. (Technically, the observer is given a
future value to delay the sleep if possible, but if the observer calls Future.get()
before the value is ready, the sleep is invoked.) Thinklab remains extensible so
that agents can be optimized further if developers would like to implement more
sophisticated sleep/wait semantics, team dynamics, etc.
Thinklab initializes agents with agent-states that have some temporal duration.
The initial agent-state created for each agent applies to the agent’s first temporal
extent, according to its subjective temporal scale. Two other designs would have
been possible: either we could have used non-temporal initial states and designed
a completely separate path of execution that happens at the start of a simulation
(surely an exercise in code duplication), or we could have initialized agents with
temporal states of zero duration and added special-purpose conditions in the code
to consider zero-duration states “valid” if they occur at the start of a simulation.
Either technique would have led to special-purpose code which breaks the strict
semantics we have chosen to simplify observations, and would have probably
led to code duplication.

4.4.1 Agent Life Cycle

This section discusses the agent life cycle that happens during a Thinklab sim-
ulation. All agents will experience birth; they may or may not experience life
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Figure 4.7: State-transition diagram of the agent life cycle

or death. (Agents in atemporal simulations will experience neither.) A state-
transition diagram showing the agent life cycle is given in Figure 4.7.

Birth

Thinklab creates one agent as a result of an observe command. This agent is
called the root subject. When the agent is created, Thinklab associates the best
model it can find with it (or create a base model if none are found). The model
associated by Thinklab to the root subject may introduce dependencies on other
agents, and these may have other dependencies, and so on. If so, observations
are triggered to resolve all dependencies to states and agents. All agents that are
necessary to provide an initial observation of the root subject are created at the
start of the simulation according to their start-up semantics. If Thinklab is un-
able to produce enough observations to maintain the root subject with semantic
consistency, this constitutes a failure condition.
As the simulation proceeds, agents are allowed to create other agents. The most
common use of this feature is for agents to send messages to each other (see
Section 4.4.2), but other scenarios are possible as well.
As in other parts of Thinklab, agent creation can be a cascading effect: an agent
that is created at runtime may have dependencies of its own that are not yet
present, and therefore new agents are created as a result of observing those de-
pendencies, and so on. Dependencies may be stated in a conditional manner that
depends on states observed before, which may lead to the selection of a different
model to complete the observations, so the results of the initial observation may
constitute all the modeler is interested in. Hence even atemporal models can be
used to accomplish significant modeling undertakings.
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Life

Once agents have come into existence, they maintain contiguous agent-state val-
ues for all periods of time during their life span. The momentary boundaries be-
tween agent-state time periods are the points where Thinklab allows the agent to
make observations and decisions, and take action accordingly. After this, Think-
lab enforces that another agent-state time period is created which starts at the
time that the previous one ends (i.e. at the observation time). No gaps will ever
exist between agent-state time periods for an agent.

Death

One possible outcome of an observation/decision is that an agent dies. In this
case, the agent would not create a new agent-state interval and no further obser-
vation tasks would be added to the observation queue for the agent. Because no
valid agent-state would exist for that agent after its final observation time, other
agents could not make any observations of it.

4.4.2 Messaging System

The messaging system in Thinklab is not an independent component but rather
a protocol that leverages the resolution, observation, and collision subsystems.
Sending a message consists of three steps:

Discover the recipient of the message using the resolution mechanism. Usually
the message recipient will already be known by the sender at the start of
a simulation via a resolved dependency, but the resolution mechanism can
also be invoked at run time as a directory service for this purpose.

Create the message by instantiating a message object. Messages are lightweight
agents which follow the same observational and temporal semantics as
other agents.

Send the message by creating a specialized collision event. The collision system
in Thinklab is a way of interrupting agents at times other than their self-
imposed observation times, but also functions as a message delivery service.
Agents are free to respond to messages (possibly changing their time scales
and agent-state expiration times), or ignore them.
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Figure 4.8: Cyclic dependency resolution using exclusive-start, inclusive-end time peri-
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4.4.3 Cyclical Dependencies

As noted in Section 3.1.1, circular references are different from cyclical dependen-
cies. Circular references do not exist in the real world, but are an artifact of the
ways models are represented. Thinklab provides safeguards against circular ref-
erences in two ways: during agent initialization via static (atemporal) circular
reference detection, and at runtime via exclusive-inclusive time period seman-
tics.
The initialization-stage dependency resolver avoids circular references during
initialization of the agents by throwing a ThinklabCircularDependencyExcep-
tion. This will occur when a cycle exists in the dependency graph for the agents
in a simulation, where no agent-state can be initialized because of the cycle. (It
is possible that a cycle exists which can be resolved by observing supplemental
data sources. Thinklab will automatically attempt to resolve cycles in this way,
and if successful, no exception will be thrown.) If a user runs a simulation which
throws this exception, then the simulation stops and the parameters or models
must be modified.
At runtime, the exclusive-inclusive time period semantics (Section 4.1.6) and
temporal observation rules prevent any circular references from occurring (Fig-
ure 4.8). Temporal observation rules stipulate that as the simulation proceeds
forward in time, all observations are made at a specific instant in time, and agent
properties which are observed must be valid during that time. agent-states which
are created or modified during the same instant are not valid until just after that
instant.
Thinklab operates with a synchronous global event clock, which opens up the
possibility of contradictions of causality in simulations. Without explicitly iden-
tifying the distance between agents and the amount of time between an action
of agent A and the observation or impact on agent B, we use this technique as a
way of enforcing that the impact on agent Bmust be at least some minimal amount
of time after the action of agent A.
Because all computing environments operate with discrete values, all implemen-
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tations of time will necessarily have some minimal granularity. Coupling this
constraint with our exclusive-inclusive semantics means that any effect which
A’s action has on B must necessarily occur at least one granular unit of time
after the action is made by A. (In the reference implementation of Thinklab, we
use the joda-time library which uses a granularity of one millisecond.) If we
did not impose these temporal semantics, then it would be as if temporal delays
between cause and effect did not exist and agents were capable of influencing
each other in simultaneous instants.

4.4.4 Collisions

Collisions may change agent-states after they have been computed. By the ob-
servation semantics we have chosen, no collision can ever change a state prior
to the collision time, but it may cause an agent-state time period to end sooner
than it had previously, and a new agent-state time period to begin at the collision
time.
It is also possible that an entire agent-state becomes invalid if cascading invali-
dations occur. In this case, Thinklab would invalidate the entire affected agent-
state, rather than partitioning it into the portion that remains valid before the
collision and the portion which must be re-computed after the collision.
The collision/invalidation mechanism in Thinklab will cause any dependent ob-
servations to be re-computed in a cascading manner. To accomplish this, causal-
ity links are recorded for all observations. Agents must re-compute their agent-
states by responding to the collision event, taking the new collision information
into account. They are free to ignore the collision, generate a new agent-state
for the partition using the original agent-state end time, or generate a new agent-
state with an arbitrary end time. The last option requires that any observation
task which had been queued for the agent is updated to reflect the new observa-
tion time.
For agent-states to collide they must coexist. No further restrictions can be made
a priori by Thinklab, because we have not stated any limitations for causality
other than exclusive-inclusive semantics. Also, there is no limit to our definition
of “collision” beyond the requirement that agent-states overlap in time. Think-
lab does not have any knowledge of communication or movement mechanisms
which the agents may be employing, so agents which overlap in space or com-
municate over other kinds of information transfer may collide with each other
in specialized ways about which Thinklab would know nothing.
Static (a posteriori) collision detection algorithms will probably not be a good
class of solutions for our semantic model, because they are built on the assump-
tion that object positions are re-computed at some frequency of time steps. Our
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model makes no assumption about the frequency of time steps, or their relation
to agents’ motion in space (or any other agent behaviors which may cause col-
lisions). Rather, the task of collision detection in Thinklab can be described as
discovering the collisions which happen between time steps. Because of this, it
seems as if we are bound to using only the closed-form collision detection algo-
rithms. We do not preclude the use of static techniques, but our semantic model
is a much better fit for dynamic ones.
Collision detection algorithms will not be handled in this project, as their proper
handling constitute an academic field of its own. Instead, we only provide the
semantic model described here, within which collision detection must happen,
and defer to this field for appropriate solutions. See Section 6.1 for more infor-
mation.

4.4.5 Functional-Reactive Programming

We have taken inspiration from Functional Reactive Programming (FRP)[13, 15]
in two ways. The first is by representing objects in the most natural way possible
by using continuous representation and by not discretizing except as an output step
when needed. The second is by separating the discrete and continuous components
of temporal phenomena. (We also use a third concept in FRP, future values, but
this idea originated elsewhere.)
One early implementation of FRP used Interval Analysis as a technique for op-
timizing computation; event detection is only performed during time intervals
where events might happen, and time intervals where no events can happen are
not analyzed.
Push-Pull FRP extends these optimizations by propagating data differently ac-
cording to whether it changes discretely or continuously. Discretely-changing
values are pushed to any component of the system which is affected (much
like an Observer design pattern [18], or like event-driven programming), and
continuously-changing values are pulled by the observer on demand.

Continuous Representation

There are two main benefits to using continuous representation semantics to
model real-world phenomena: 1) continuous representation can more accurately
describe the real world; and 2) when discretization is necessary, continuous rep-
resentation provides flexibility in dealing with multiple scales of granularity. Ac-
cordingly, we have incorporated continuous representation into the execution
model in two ways.
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The first is by representing agents and agent transitions using continuous values
when possible. In many cases, agents are data sets collected from the field and
are inherently discrete; these agents are represented in Thinklab in their natural,
discrete scale. But other agents generate their states and can use continuous val-
ues to represent themselves. These agents can also express their state transitions
fluidly by reporting them directly, instead of reporting a new agent-state at each
transition.
The second is by creating scale mediators (Section 4.2) which store a continuous
intermediate representation of the agent they are connected to. The primary
benefit for this design is when the scale mediators must present agent-states at
multiple discrete scales. Instead of re-generating each scale from the original
each time, the intermediate representation can be discretized into whatever scale
is necessary. As mentioned in Section 4.2.2, many scale mediation algorithms
inherently have an intermediate step which can be represented in a vector form.
It is this vector form which is used as the continuous intermediate representation
of the agent being observed.

Interval Analysis

Interval Analysis (IA)[52] is a technique used by one implementation of FRP to
determine when events will not happen so that computation effort can be focused
on analyzing when events might happen. In Thinklab, we have enforced well-
defined times when events happen through our temporal event semantics, which
removes the need for IA.
The classes of events in Thinklab are observation times and collisions, each of which
can only happen at well-defined times. Observation times are always known a
priori because agents are required to state their next observation time as a result
of each observation (see Section 4.1.5); collision times can be known through
collision detection (see Section 4.4.4) or through explicit collision creation, as
is done in the messaging system (see Section 4.4.2). No other event times exist
in Thinklab, so there is no ambiguity for which we need to optimize through
analysis techniques such as IA.

Push-Pull FRP

Push-Pull FRP [15] is an implementation of FRP which takes more optimization
details into consideration. It distinguishes between discrete reactive values and
non-reactive, continuous time functions, two semantic methods of expressing time-
varying values. Push-Pull FRP models real-world activity using reactive behaviors
which are composed of these two time-varying components. A summary of the
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In General Discrete Continuous
Event Discovery “pushed” by actor “pulled” by observer
Programming Style imperative functional
In FRP
Concept Name event behavior
Value Name reactive value time function
Knowable A Priori depends on context fully knowable once generated
In Thinklab
Concept Name observation time agent-state time period
Value Name observation/decision agent-state function
Knowable A Priori event time only fully knowable once generated
Consistency Requirement required for valid agent-state executed only on demand

(inherently consistent)

Table 4.1: Push-Pull dynamics in Functional Reactive Programming and in Thinklab

differences between discrete and continuous is in Figure 4.1.
Our temporal observation and behavior semantics compose these discrete and
continuous components into one cohesive model for agent-state changes, similar
to FRP’s reactive behaviors. We stop short of analyzing the similarities between
agent-states and reactive behaviors, though, because of the differences between
our implementations.
As in FRP, we must accept that some processes in our system such as run-time
decision making are stochastic. What this means in Thinklab is that, at every
observation time, an agent may potentially make a decision which affects its state
in an unpredictable way. We cannot take shortcuts by skipping observation times
where agents decide to be inactive, because we cannot know whether an agent
will be inactive until that agent’s decision computation has been performed. (We
would like to relax this assumption; we leave possible implementation techniques
to Future Work in Section 6.1.)
Without doing additional work on detecting when agent decisions can be skipped,
we have designed our observation system with the assumption that all observa-
tions will necessarily be made. Our agent-state functions are flexible state rep-
resentations, blending discrete and continuous time-varying values; in addition,
we allow decision distribution functions. A full description of time-varying ob-
servable values is given in Section 4.1.7.
Push-Pull FRP and Thinklab both make use of future values, a way of providing a
temporary representation for a value that is not yet knowable so that processing
can continue until the value is absolutely needed. Because this is a standard
technique in software engineering and did not originate with FRP, we leave its
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treatment to Implementation (Section 5.4).

Discrete Events

Discrete events generate what are called reactive values in FRP. Reactive values
express things like user input, such as key press events, or other instantaneous
events that modify a property to take on a new constant-valued state. These
events are separated by arbitrary lengths of uneventful time. Discrete events can
be expressed as a step function: they are an ordered series of occurrences, each
of which is a constant value that becomes valid for a specific time interval. When
the next value in the series becomes valid, the previous one becomes invalid.
Push-Pull FRP’s treatment of discrete events focuses on detecting when they may
or may not happen, and on the types of states they bring into existence. We
model discrete events differently than FRP because we have the luxury of know-
ing the exact time of every agent observation and decision a priori. Besides this
difference, the same properties of discrete events hold for Thinklab as for FRP.
We do not need to perform interval analysis to optimize event discovery, but we
do use discrete event semantics as a way of efficiently modeling agent behavior.

Continuous Behaviors

Continuous time functions in FRP express constantly-changing states which cannot
be computed on an ongoing basis without introducing artificial discretization,
and in general cannot be efficiently computed in a “forward” direction. Instead,
it is better to evaluate time functions as needed.
Time functions allow for modeling continuous phenomena like motion through
space which cannot be discretized without losing information. In Thinklab,
continuously-changing states are modeled as agent-state distribution functions, or
agent-states for brevity (see Section 4.1.7). Agent-states come into existence as
a result of decisions made by agents during discrete observation times, which are
the equivalent of Push-Pull FRP’s discrete events.

4.4.6 Distributed Processing Considerations

In Thinklab, causality follows the forward movement of time; events can cause
state changes and collisions, and observations can only depend on states which
have become valid prior to the observation time. Agents can be created and
destroyed according to events or thresholds.
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Thinklab operates with a globally synchronized clock and observation graph,
but it would be helpful from a system design point of view if agents’ internal
processes and localized interactions could happen without any global synchro-
nization. This would allow for parallel implementation and would surely lead to
better performance than with the overhead of total agent (i.e. process) synchro-
nization.
An optimal implementation taking multiple scales into account would have agent
scales which are completely decoupled from each other, such that there is no
globally consistent scale at all. The final observation of the root subject which
is requested by the user would inherently operate with its own scale which is
presented to the user, but this should not impose any restriction on other agents.
A fully distributed approach would have two advantages over a serial one in two
primary ways:

Flexible implementation options would allow distributed processing and the
performance gains that come as a result

Simpler agents in terms of their semantic definitions and logistical overhead
needed to run them.

With fully decoupled scales, spatio-temporal boundaries must be synchronized
between agents, so that agents can interact with each other, and so that observ-
able values can be integrated. This task depends only on a master agent with
enough knowledge to position the various agent-states in time and space. Think-
lab performs this task by allowing agents to proceed without requiring knowl-
edge of a global schedule, and synchronizing their observations and behaviors
as necessary.
One potential pitfall exists: the number of threads in a multi-threaded design
must be greater than the number of potential sleeping threads, to avoid an
infinite-wait scenario. The current design specifies that an observer’s thread
should sleep until all of its observable dependencies have been fulfilled; if all
threads are occupied by waiting observers, then no dependencies will be met.
(This is also a shortcoming of our single-threaded proof of concept, but we have
avoided it by the simplicity of our tests; multi-threading capabilities are a strict
requirement to avoid this scenario under the current design.)
We believe we have found a good balance between global consistency and
amenability to parallelization in the Thinklab platform. More information on
our global synchronization semantics can be found in Section 4.1.4.
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Implementation

Here we discuss the implementation of our design, and the engineering issues
therein. We have implemented our design in the form of a complete API which
integrates into the Thinklab modeling system, a substantially completed refer-
ence implementation of this API, and a proof of concept using Scenario 1 from
Section 3.4.1. The API contains all components necessary to facilitate the de-
signs described in Chapter 4, with three exceptions. First, we have not included
convenience functions for creating and sending messages (although they can be
manually created by agents using the technique described in Section 4.4.2); sec-
ond, we have not incorporated scale mediator selection into the TQL language
or by automated reasoning (although these changes will modify the API mini-
mally if at all); and third, we have not implemented any agent perception filters
because their treatment is outside the scope of this work.
UML diagrams of the most important Java classes implemented for this project
are shown in Figures 4.3, 5.1, 5.2, and 5.3.

5.1 Semantics
In this section we describe the ways we implemented the semantic constructs
described in Section 4.1.

5.1.1 Agent and Interaction Types

Agent types available in Thinklab at the time of this writing are information carri-
ers (e.g. messages and non-dynamic model agents), reactive agents (rule-based
agents), and deliberative agents (imperative-logic agents). While semantics is
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Figure 5.1: UML Diagram of the main Java classes in our implementation

ScaleMediator
controller
subjectAgent
timeOrderedStateObservations

ScaleMediatorCubic

ScaleMediatorLinear

ScaleMediatorNearestNeighbor

ScaleMediatorOversamplingScaleMediatorNull

Figure 5.2: Inheritance structure of the Scale Mediators

64



Chapter 5: Implementation

ObservationController
causalGraph
taskQueue
currentlyProcessing
agentDetails

PriorityQueue<ObservationTask>

taskQueue

Set<ObservationTask>

ObservationTask
subjectObserver
observationTime
valid
startedAt

ObservationTaskCollisionHandling
collision

Collision
collisionTime
causingAgentState
impactedAgentState

Message
message

ObservationTaskCollisionDetection
node1
node2

ObservationGraphNode (see main diagram)

ObservationGraphNode (see main diagram)

node1 node2

Figure 5.3: Tasks, Collisions, and Messaging components

available in the TQL language to specify these classes of agent, the definition
of agent interaction patterns and protocols is left to the developer for the time
being. For the purposes of this work, we capture the agent taxonomy as a stan-
dard Java hierarchy of Agent types, from which developers can derive agents
aware of specific communication protocols, team-building strategies, etc.
An essential mechanism for any kind of agent interaction design is communica-
tion. We have developed a messaging component which is a simple re-use of the
collision and observation paradigms designed earlier in this project (see Section
4.4.2). Because we have not incorporated agent coordination into our proof of
concept, we have left messaging code and tests for later implementation. How-
ever, it is worth mentioning that this implementation only requires a wrapper
function call consisting of a single line of code. A message is nothing more than
a special collision object which is handled by both the receiver and by the mes-
sage itself. (Specific message types with appropriate handling functions must be
developed as well.)

5.1.2 Temporal Scale

The ITemporalExtent and ITemporalSeries interfaces were created during this
project when it was decided that the temporal dimension had enough unique
properties to warrant special treatment compared to a generic topology type.
ITemporalSeries extends ITemporalExtent, which extends IExtent, which had
already been a component of IScale before the work presented here was started.
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The directionality of time is represented by a strict ordering of its sub-extents;
ITemporalExtent.getExtent(1) should always return the contiguous extent that
occurs immediately after the one returned by ITemporalExtent.getExtent(0).
One-dimensionality is expressed by the fact that the methods getStart() and
getEnd() return scalar ITimeInstant values.
Temporal scales composed of contiguous time periods can be represented
through instances of ITemporalSeries. This interface expresses the operations
one would expect to perform on any contiguous linear series with specialized
treatment for time. For instance, ITemporalSeries.shorten(spliceTime) takes
only a single instant as a parameter, and it is assumed that the caller would like
to shorten an overlapping time period and keep only the portion which falls be-
fore the instant. This is due to the forward-causality of time, and exists to support
collision computations: only the events after a collision are affected and should
therefore be discarded, not the ones before it.
Similarly, ITemporalSeries.bisect(spliceTime, newObject) splits a time pe-
riod into two, and attaches newObject to the newly created period (the other one
is only shortened, and keeps its originally attached object). As in shorten(), the
newly created period in bisect() is always the one which occurs after the splice
time.

5.1.3 Temporal Synchronization

To allow agents to operate at different temporal scales, we have implemented
a TemporalCausalGraph class, containing a series of agent-states of arbitrary
duration for each agent. At the end of an observation, an agent reports at what
time its next observation will be. These observations are ordered and placed into
a queue of IObservationTask objects for which the controller serves requests.
The temporal series (instances of type ITemporalSeries) stored by the Tempo-
ralCausalGraph for each agent are not required to synchronize with each other,
other than being specified using absolute, globally synchronous time values.
Agents themselves have perception filters which may imply that these globally
synchronous time values have different meaning and implications for different
agents, but the IObservationController is only made aware of the time values
and does not consider any subjective meaning they may have for a given agent.
The TemporalCausalGraph is the single authoritative knowledge store for sim-
ulation results. Because it is maintained by the single-threaded IObservation-
Controller, synchronization is maintained in the system via the IObservation-
Controller API.
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5.1.4 Observation Times

At run time, agents report the results of their observations by generating in-
stances of the ITransition interface. Currently, agent-state information is re-
trieved from the ITransition objects using ITransition.getAgentState().
One of the most important strategies for the temporal synchronization of obser-
vations is using globally synchronous observation times. As a result, the time val-
ues reported by agents at which their observations occur are in absolute-valued,
globally-meaningful time values. The time value that one agent reports can be
understood by another agent unambiguously to mean a single instant in time. In
Thinklab, we use the UNIX time system, which expresses the number of seconds
(and milliseconds) elapsed since 00:00:00 Coordinated Universal Time (UTC),
Thursday 1st January, 1970.
Observations are synchronized as their results are reported to the Observation
Controller. The Observation Controller maintains a single authoritative graph of
observation times and the resulting agent-states; all associated time values share
the same temporal measurement system.

5.1.5 Exclusive-Inclusive Time Periods

The agent-states generated by agents at each observation are a set of property-
value pairs valid during some time period. These time periods follow exclusive-
inclusive semantics, which we enforce by implementing the ITimePeriod (for
single time periods) and ITemporalSeries (contiguous series of time periods) in-
terfaces such that instances of them are aware of exclusive-inclusive rules. These
interfaces extend ITemporalExtent.
The creation of a new agent-state happens at the instant of observation, and
takes effect the instant after observation. Reading from existing agent-states (in
other words, performing the sub-observations that are necessary for generating
observation data and new agent-states) will only return states which are valid at
that instant. To determine whether states are valid at a given time, the ITimePe-
riod methods overlaps, contains, endsBefore, etc. were implemented using
exclusive-inclusive semantics. In most cases, calling code does not have to know
what temporal semantics are being enforced. The methods are called using a
time instant (ITimeInstant) or time period (ITimePeriod) parameter, and re-
turn meaningful values without needing to state their underlying semantics.
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5.1.6 State Distribution Functions

Agent-states are composed of property-value pairs valid during a given time in-
terval. The values are not required to be constant over the duration of the agent-
state, or even to be scalar or categorical in nature. They can be functions of time,
or they can even be distributions over some number of functions over time. The
values contained in these property-value pairings are instances of the IState
interface.
Probabilistic or statistical models can be created with agent-state functions that
in place of single values express a probability density function or an explicit
discrete distribution. The statistical or probabilistic values have not yet been
implemented for any agents in our proof of concept, but could be done easily
by implementing the IState interface, or extending an existing implementation.
This interface has methods to store any type of Java object as an agent property
and so is un-constrained in its ability to store complex values or functions.
Some implementations of IState (specifically, the subclasses of IndexedState)
already accommodate arrays of values which match the cardinality of the scale to
which the values apply. A similar approach could be used to store not just arrays
of dimensionally distributed values, but probabilistically or statistically distributed
values. Such values could be represented using special-purpose Java objects (for
instance by using a generic class like StatisticalDistribution<T>), and stored
the same as the scalar or categorical values already being used in Thinklab.
Evaluating a state-distribution function would be a simple matter of calling
IState.demote() to return the bare state-distribution object, and then eval-
uating that object for the evaluation time using a call like demotedValue
.evaluateAtTime(t). Depending on how the usage evolves, this operation could
be rolled into a helper method on the subclass of IState.

5.2 Scale Mediation
Scale mediators were implemented as modular components which can be dy-
namically selected at runtime based on the ontologically-defined semantics of
the agents involved.
A simple example is an agent which computes rainfall runoff characteristics over
some area of land by reading the elevation data for the area and converting
it into slope values. In this scenario, a scale mediation strategy that preserves
(or creates) differentiability in the surface data will be beneficial to the slope
calculation. This benefit relates to the relationship between concepts of elevation
and slope; it has nothing to do with the agent itself. Because of this, preferences
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and selection strategies are used which take ontological concepts into account.
The decision to use a decoupled mediator takes its inspiration from Dependency
Injection [17] and the Strategy design pattern [18]: by decoupling an object from
its strategy, and by leaving instantiation, initialization, and coupling to higher
levels of the system, configuration can be made extremely flexible, allowing both
modelers and developers to finely tune behavior, test and debug issues, and ex-
plore the dynamics of a simulation by focusing on broad or narrow behavior
characteristics as necessary.

5.2.1 Caching Mechanisms

Push-Pull FRP takes advantage of the fact that push events are represented by
pure data, and are therefore automatically cached in Haskell. Although this
strategy takes advantage of mechanisms unique to Haskell, it applies equally
well to our implementation. Haskell is able to automatically cache pure-data
results not just because it is a well-designed language, but because pure data can
inherently be cached to the extent that it is immutable.
In our environment, push events are triggered by agents making observations
and generating agent-states for the subsequent time periods. We will store all
agent-state results in a graph data structure (see Section 5.4.2), which will even-
tually be persisted to a graph database during the course of the simulation. (The
persistence feature is not included in our proof of concept.) This graph, whether
or not it is persisted physically, stores all agent decision and collision results. It
will serve as the core of synchronization and will provide a full causal history of
the simulation.
By intelligently building the components of this graph and the scale mediator
objects which translate the states stored in the graph nodes, we have created
an observation-task, agent-state, and cache invalidation mechanism which can
reliably follow the trail of cached information throughout the system in the case
that an agent-state must be altered after it is placed into the graph. The cache
invalidation event occurs only when a collision is generated between agents (see
Section 4.4.4).
Cached information in the system only represents duplicated information inside
of the mediator objects. Mediators are allowed to keep two types of caches:
intermediate vector representations and output caches. The latter follows standard
software engineering practice as a method for reducing computational load, and
has no features not present in the former. The former has unique characteristics
and is the first cached element within a scale mediator, so we focus our attention
on it.
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Intermediate Vector Representation

Many scale mediation mechanisms use an intermediate representation of the
source data which is continuous. As a result, they are capable of generating arbi-
trary discrete scales without the need to replicate the mediation process. Using
this property, we can design mediation strategies which are inherently re-usable
and more scalable than if the whole process was repeated from source data.
To facilitate building re-usable scale mediators, the ScaleMediator abstract par-
ent class contains a SubjectObservation type which is used to store each node
of agent-state information. This is a base type intended to be extended in sub-
classes of ScaleMediator to contain a member field intermediateRepresenta-
tion, used to store any intermediate vector representation necessary to support
the specific scale mediation strategy. Re-computing a new scale after a cache has
already been primed will incur only the cost of re-rendering the vector represen-
tation into the desired scale. Put simply, this cached intermediate result is part
of what other scale mediation strategies actually do: at their heart they are just
mechanisms to generate a continuous representation of the underlying proper-
ties. The final step of rendering this representation into a discrete scale is trivial
and is essentially the same across all mediation strategies. We take advantage of
this fact and of the fact that the continuous representation is cacheable.
Also included in ScaleMediator is a spatial index which uses the R-Tree data
structure to facilitate spatial searching and overlap detection [20]. Its use is
demonstrated in the ScaleMediatorOversampling subclass (still incomplete at
the time of writing). To mediate from scale A to scale B, random points are
generated within an extent of scale B, and those points are then superimposed
upon scale A using the spatial index. This superimposition accomplished by
searching the R-Tree of scale A for the coordinates of each point. Other scale
mediation strategies will make use of spatial and other dimensional indexing,
and R-Trees can adapt to arbitrary dimensions, so this spatial index was placed
in the abstract parent class ScaleMediator.

Output Caches

When multiple observers observe a single subject, it is a common occurrence that
they operate at the same scale; it is therefore best to cache results generated by
mediators in a way that is accessible by other observers. This cache can take
the standard form of f : Signature → Result where Signature is a unique
description of the function call by the requesting agent, and Result is the result
returned by that function call.
It is anticipated that these caches will become too large to store in RAM for the
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duration of a complex simulation; a flushing mechanism based on storage size,
staleness, or the time values of the current observation tasks will be designed to
address this problem.

5.2.2 Multivariate Scale Mediation Strategies (d-Dimensional)

Many interpolation techniques in the image processing canon are applicable to
arbitrary dimensions. This allows these techniques to be applied to the problem
of integrating multiple scales for arbitrary modeling tasks where then number
of dimensions is not known a priori. Some techniques borrowed from the image
processing domain are limited to two dimensions. A general modeling platform
should ideally feature more flexibility than this, so they are not included here.
They could be added to Thinklab using this same API under special conditions if
deemed useful by a developer.
There are also many existing geospatial interpolation techniques (e.g. Krig-
ing [34]), but even so, these algorithms might not be the best fit for our problem
space, because the problem as we experience it is not that our data set lacks
samples (as for example in the sparsity of high-altitude weather stations in the
French Alps). Rather,the measured data is of a granularity which is incompat-
ible with an observer. Our problem lies much closer to that of effective image
re-sampling than to geospatial interpolation, despite the latter having been the
primary domain in which Thinklab has been used so far.
Still, the rich field of geostatistical techniques can be mined for input into
the domain-aware areas that we are developing. Specifically, the Application-
Specific Approaches from Section 2.3.4 allow for domain knowledge to be ap-
plied as a final step so that vectors are selected from among many possibilities,
and smoothed appropriately.
Java’s Advanced Imaging (JAI) Library is the foremost candidate for general
image manipulation and re-sampling [45]. It was considered as a reference im-
plementation for some interpolation functions, given its stability, efficiency, and
Open Source code base which could be re-used within Thinklab. But although
the algorithms it implements are able to scale to d-dimensions its API is tightly
locked into a two-dimensional world. For this reason, it cannot be used in its
native state, although the option exists to closely mimic its data structures so as
to re-use some of the code or optimizations contained in it.
This problem is true of most Java implementations of image manipulation algo-
rithms. Java AWT, for instance, also contains many out-of-the-box resizing tools,
but it is even more embedded semantically into its niche (creating user interfaces
and displaying images) [60].
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5.3 Subjective Agent Perception
We do not anticipate the development of perception filters to pose any serious
challenge, but our proof of concept did not require their use. Their implementa-
tion will be a simple task of creating a callback structure within the observation
process, in which agents can define filter objects. The filter objects will do no
scale mediation and will have relatively loose constraints placed on their behav-
ior. They will simply take IState values as parameters and produce filtered
IState values. We have left this for future work.

5.4 Execution Model
In this section we describe the implementation of the execution model design
outlined in Section 4.4.
Because the proof of concept was written in a single-threaded style, there was no
need for the use of future values, as mentioned in Section 4.4.5. The code already
includes multi-threaded capabilities which were not tested, and incorporating
future values into themulti-threaded code will be a simple matter of replacing the
current command Thread.sleep() with a future of the value requested, which
internally will call Thread.sleep() if it enters its blocking code path and no value
is available.

5.4.1 Circular References

No special treatment was given for circular references beyond the use of
exclusive-inclusive temporal semantics, whose implementation is described in
5.1.5. Atemporal simulations and the instantaneous initialization procedure
which had already been a part of Thinklab had already had circular reference
detection and avoidance mechanisms built-in, so the only challenge in this work
was to avoid circular references at run-time for temporally dynamic simulations.
Because exclusive-inclusive semantics provided this solution, no further work
was needed.

5.4.2 Observation

We built a single-threaded proof of concept for this project, but the observation
system is designed to allow multi-threaded execution (Figure 5.4). For each
observation cycle, a worker thread pulls a task from the observation queue by
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Figure 5.4: The observation system is composed of a single-threaded controller plus
worker threads which perform the observation tasks

requesting it from the observation controller, performs the task, and returns the
result by calling ObservationController.setResult(task, result).
The controller processes the result by storing a new agent-state in a causal ob-
servation graph (Figure 5.5), a graph structure indicating causality relationships.
The observation graph records both causal relationships which represent how
agent-states were created, and influential relationships which indicate how agent-
states influence each other during observation.
The controller also maintains a simple task queue organizing the observation tasks
by the order in which they must be processed. As tasks are pulled from the queue
and given to worker threads for processing, they are added to a collection of cur-
rently processing tasks. This will allow a multi-threaded version of the system to
detect and mitigate a task execution failure, and also allows tasks to be invali-
dated while they are being processed (see Section 5.4.3). Finally, the controller
stores metadata about each agent and indices for navigating between agents,
tasks, and agent-states.
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Figure 5.5: Observation graph used for storing agent-states and their relationships

5.4.3 Collision Detection and Invalidation

Collision detection is a loose term we use to describe computing when agents
interact with each other outside their normal observations, decisions, and agent-
state changes. Collision detection is done using ObservationTaskCollision-
Detection tasks, which are generated by ObservationController.setResult()
after a normal observation task has been completed.
Because collisions may affect previously created agent-states, the IObservation-
Controller and IScaleMediator interfaces have an invalidation mechanism to
maintain accurate, temporally synchronous states and caches.
Collisions are not restricted to be physical in nature (as is the case in most
literature, generally in the context of video games, interactive animations, or
physics-based simulations). Collisions can happen as a result of active decisions
by agents, for example in message passing; collision detection refers to the detec-
tion of inadvertent interruptions which are not an explicit act of an agent.

Collision Detection

Collision detection is done by specialized task objects (instances of Observation-
TaskCollisionDetection) which are created at the conclusion of every agent-
state observation task. The controller iterates through all overlapping agent-
states and creates one collision detection task for each pair of agent-states (Fig-
ure 5.6). These tasks are executed by worker threads in the same manner as
general observation tasks. If any collision detection task results in a collision,
the ObservationTaskCollisionDetection object calls ObservationController
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Figure 5.6: Collision detection is done for all overlapping time periods

.collide(node1, node2, collision), where node1 and node2 refer to nodes in
the temporal causal graph maintained by the observation controller.
In ObservationController.collide(), the controller asks each agent to deter-
mine whether or not the collision affects it. Both agents for every overlapping
pair are interrogated; this is because they belong to different types and may use
different logic to determine whether collisions are important. One agent may be
inanimate with respect to collisions (such as a water table model) and therefore
always return false, whereas an agent interacting with it may return true, for
instance if an agent falls into a well and hits the water as a result of the water
level reported by the water table agent.
The proof of concept we created does not implement the various collision de-
tection algorithms or criteria. We have created the detection, invalidation, and
handling procedure outlined here, but the actual work of detecting collisions is
beyond the scope of this project. We believe that the API is a good interface
for collision detection logic, as it provides a simple callback mechanism where
detection algorithms can be introduced.
The field of collision detection is broad, even the problem is stated differently
in different contexts. For each form of the problem, many strategic approaches
exist [30]. But even these physics-based definitions are more restricted than our
collision detection system, because we leave the possibility of abstractly-defined
collisions open. Concrete collisions may represent a loud noise that disturbs an
agent, a flash in the background of an agent’s visual field, unexpected distor-
tion from a static-electric field, etc. For now, we leave our API intact with the
possibility to expand via standard collision detection strategies as well as any
domain-specific collision detection that may be appropriate.

Agent-State and Task Invalidation

The observation graph supports invalidating previously made observations
through a time-based invalidation procedure (Figure 5.7). If an agent reports
that a collision results from two agent-states, then each agent involved in the
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Figure 5.7: Invalidation of observation results during collision detection

collision is asked whether or not the collision affects its agent-state. If an agent
responds with true, then the invalidation procedure is triggered.
Observation tasks maintain a causal relationship with the agent-states that ini-
tiated them. For instance, an agent a which remains alive beyond agent-state
at creates an observation task to observe agent-state at+1. In this way, when
a collision invalidates an agent-state in the observation graph, any subsequent
observation tasks which resulted from the invalidated portions of agent-states
are also invalidated.
The observation graph treats causal and influential relationships differently. An
example is a child who goes to a certain school for some period of time: if by
processing a collision, the simulation determines that the school never existed,
then the child would be updated to go to a different school. But if it is determined
that the child’s parents never existed, then the child would be deleted from the
simulation. The differences in the handling procedures are explained below.
The collision is reported to the observation graph, along with the affected agent-
state. The observation graph shortens the agent-state so that it ends at the colli-
sion time, and also determines which other agent-states had a causal (as opposed
to influential) dependency on the portion of the original agent-state which has
now become invalid. This is done by examining all causal links in the graph
which originate at the agent-state being invalidated; any of the dependent agent-
states which begin after the collision time are removed from the graph. This is
done in a recursive manner, so that any states which are in turn causally depen-
dent on the ones being deleted are also deleted.
Influential relationships are treated differently. Any agent-states in the graph
which have an influential dependence on an agent-state which is invalidated
must be re-evaluated, rather than deleted. To accomplish this, a mapping be-
tween each agent-state and the observation task which led to its observation is
kept by the observation controller. A task can be re-executed at any time by
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querying this map for the agent-state which must be re-evaluated. Executing the
task is as simple as re-adding it to the observation queue.
Once the agent-states have been shortened and the invalid dependents removed,
a new collision handling observation task is created so that the agent can decide
how to handle the collision. This task contains a reference to the collision object.
Invalidating observations which have been queued but not yet observed is done
by setting a flag on the observation task object. If the next task from the obser-
vation queue retrieved by the observation controller has been invalidated by a
collision, the task is discarded and the next task is retrieved from the queue. If
a result is returned to the observation controller whose original task object has
been invalidated, the result is discarded.
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Conclusion/Future Work

In this thesis we have presented a novel way of decoupling the particular scale
at which agents operate from the simulation system and from the scales of other
agents with which they interact. During the course of our work, the unique char-
acteristics of time have compelled us to give it special treatment, and even to
hard-code some of its unique characteristics directly into our reference imple-
mentation, which has not been necessary for space or for other dimensions.
The library that we have generated could also be a generalized platform for
adding raw data processing (e.g. Kriging) techniques into a system, such that
field data can be used directly without any pre-processing. The pre-processing
and data cleansing algorithms operate under the same assumptions and share the
same task as our own Scale Mediators: generating data sets in a specific scale
based on some data source values that potentially adopt a different scale.
Extending a system to include this level of data processing would allow e.g.
ecosystem modelers to work more efficiently, speeding up the job of ecosystem
simulation. It is possible that this type of update would require metadata, includ-
ing for example estimates of any loss of accuracy due to scaling, to be generated
in addition to the raw data output – a simple enough modification to make in
our Scale Mediator API.

6.1 Future Work

Throughout this thesis we have mentioned areas that deserve further exploration.
Here we revisit them as a guide for other researchers as well as to hint at our
own upcoming development efforts.
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6.1.1 Collision Detection

We have not yet incorporated any collision detection algorithms into our code.
The collision detection system exists, and collisions can be explicitly created if
desired, but no agents have yet been designed to detect collisions in real time.
Using the RTree class which is already used for spatio-temporal indexing in the
ScaleMediator class would allow agents to provide collision detection relatively
easily; a global RTree instance would probably suffice. Still, this functionality
was not needed for our proof of concept. Many collision detection techniques
and algorithms already exist, and we have designed our API in a way that should
conveniently interface with pre-existing code.

6.1.2 Other Interpolators

Our proof of concept included only a single scale mediation mechanism, which
was adapted from the “oversampling” image interpolation strategy. Many other
strategies exist, some of which were mentioned in this thesis. Their implemen-
tations should be straightforward, and in many cases pre-existing libraries will
exist that can be adapted to Thinklab. However, many pre-existing libraries are
highly focused on specific domains of application, and may require rewriting if
they are to work with another platform or with arbitrary scales or dimensions.
Java’s Advanced Imaging library, for instance, is well established but would re-
quire significant work for the algorithms to be adapted (see Section 5.2.2).

6.1.3 Intermediate Representation and Differential Transitions

Because the proof of concept includes an interpolator based on the oversampling
technique, and because oversampling does not require an intermediate represen-
tation, this technique was not implemented during this project. The mechanisms
do exist, as outlined in Section 4.2.2, but no scale mediators have yet been de-
veloped which take advantage of this feature.
When implementing this feature, it will also be advantageous to implement
the differential transition mechanism in the ITransition interface. Eventually,
ITransition will support methods to dynamically update pre-existing cached
data rather than replacing it with newly generated data. This will improve
the scalability and accuracy of the results delivered to agents at different scales.
This approach is described in Section 5.1.4. Applying transition differentials to
vector representations of objects is much more accurate than doing so through
discretized representations of those objects, and applying differentials to either
type of representation is generally more efficient than re-computing results from
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scratch.

6.1.4 Optimization by Skipping Observations

In section 4.4.5 we mentioned that we cannot take shortcuts by skipping ob-
servation times where agents decide to be inactive. However, it is not difficult
to imagine that we could detect cases where observations could be skipped, and
postpone the appropriate observation task in the Observation Controller until the
next observation time. This undertaking would include two tasks: identifying the
scenarios under which observation tasks could be delayed, and implementing the
mechanism by which they are delayed. The first will most likely result from us-
ing the system and paying attention to the patterns of high resource usage by
agent type, and the second will be trivial once progress has been made on the
first.

6.1.5 TQL Language Changes

For the proof of concept, we created test cases using JUnit 4.0 and a ModelProxy
object to drive the resolution and observation processes. By doing so, we were
able to avoid the need to update the TQL language with all necessary features.
Most were updated (the models we used in our tests were defined in TQL) but
we did not implement a way of defining ontology-driven scale mediator selection
processes or unbounded temporal scales. A rough outline of the scale mediator
selection syntax has been started at the model level, but this syntax needs to be
fully defined, implemented, and updated so that it relates to ontological concepts
rather than directly to models. Unbounded temporal scales do not present any
technical challenge; our proof of concept did not strictly require them so they
were not prioritized for.

6.1.6 Deliberate Simplifications

Many deliberate simplifications were mentioned in Section 3.5. In cases where
a more highly tunable or domain-specific application is needed, some of these
limitations may need to be addressed. The most likely candidate is our current
treatment of four-dimensional space and time as the limiting bounds of reality;
although this is not a hard limitation, we have not yet tested Thinklab beyond
this usage model.
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Glossary

agent Possibly the most important term in this thesis, agent refers to a being
in the real world which is able to interact with the world. Some agents
are simply observed phenomena, such as a message being passed from one
agent to another. This message agent cannot reason or make decisions. It
may be passed electronically and wirelessly and have no physical manifes-
tation at all, and its temporal duration may be so small that no agent in
the simulation can measure it. Still, because a message can interact with
the world, it is considered an agent. Other agents may include weather
patterns, vegetation growth, soil quality, family units, larger population
groups, governments, etc..

agent-state One segment of time in the life of an agent. Agents’ lifetimes are
segmented by decision times; between decision times, their state functions
do not change. These time periods are called agent-states..

collision A general term we use to refer to changes forced upon agents in the
system which are not a result of their own internal decisions. Collisions
are not necessarily physical impacts (or even physical at all); the term is
a reference to the field of collision detection, which is the closest related
field from which we can draw inspiration. Collisions include deliberate
interruptions such as messages being sent from one agent to another..

observation The most important act that happens in the system is that of obser-
vation. Thinklab is a semantic meta-modeling system composed of agents
which observe each other over the course of a simulation. In the context
of observation, the observing agent is known as an observer; the subject of
the observation is known as the subject..

observation time At each time step of an agent’s Subjective Time Scale, any agent
which is a Decision Maker Agent (see Section 2.1.3) will have the choice to
make a decision. It may be the case that the decision leads to no action,
but that is up to the agent itself; the system will trigger the appropriate
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decision making procedure on an agent at every one of the agent’s internal
time steps.

perception In Thinklab, an agent is considered to exist in a complete, syn-
chronous, real world, and agents are given full access to all observable
properties. An agent is free to internally filter the properties so as to create
a limited Perception of the world around it. Example: Say a mountaineer
agent and a full three-dimensional mountain model exist in a Thinklab
simulation. At runtime, the mountaineer agent will be given the three-
dimensional mountain model, but after applying internal filters, the agent
experiences only a two-dimensional visual image of the mountain, which
is appropriate for a human which sees in the visible spectrum. This visual
image is its internal perception of the mountain.

root subject The primary observable agent in a simulation, for which all depen-
dent observations are generated.

scale mediator Scale mediators are the objects in Thinklab which allow observa-
tions to occur between agents whose views of space and time differ. Agents
may observe space as a series of grid cells, polygons, points, etc. and they
will generate observable phenomena according to their subjective views.
Other agents are able to observe these phenomena by employing scale me-
diators during observation..

state distribution function a probabilistic distribution over all state functions
which could be expressed by a subject agent during one time period accord-
ing to the subject agent’s subjective internal time scale.

subject An agent which is being observed in the context of the discussion. Ex-
ample: Soil quality which is measured by a farmer on a periodic basis is a
Subject.

subjective scale A view of space and/or time according to an agent’s subjective
experience of the world. Example: An agent representing an animal which
hibernates may have time steps totally different from one who does not;
these would have differing subjective scales..
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